江苏省常州市前黄中学2019-2020学年高二数学下学期第一次调研考试试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 常州市 中学 2019 2020 学年 数学 下学 第一次 调研 考试 试题 解析
- 资源描述:
-
1、江苏省常州市前黄中学2019-2020学年高二数学下学期第一次调研考试试题(含解析)(本试卷满分150分,考试时间120分钟)一、单项选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.若,则的值为( )A. B. C. 3D. 4【答案】A【解析】【分析】先求导数,再把代入导数可得的值.【详解】因为,所以,所以.故选:A.【点睛】本题主要考查导数的基本运算,熟记求导公式及法则是求解的关键,侧重考查数学运算的核心素养.2.已知曲线在点处的切线的倾斜角为,则的值为( )A. B. C. D. 【答案】D【解析】【分析】利用导数求出,由可求出的值【详
2、解】,由题意可得,因此,故选D【点睛】本题考查导数的几何意义,考查导数的运算、直线的倾斜角和斜率之间的关系,意在考查函数的切线斜率与导数之间的关系,考查计算能力,属于中等题3.已知离散型随机变量的分布列如下,则( )024A. 1B. 2C. 3D. 4【答案】B【解析】【分析】先计算,再根据公式计算得到【详解】故答案选B【点睛】本题考查了方差的计算,意在考查学生的计算能力.4.函数的单调减区间为( )A. B. C. D. 【答案】C【解析】【分析】先求函数的定义域,再求解导数,令可得减区间.【详解】定义域为,令可得,所以单调减区间为.故选:C.【点睛】本题主要考查导数的应用,利用导数求解单
3、调区间时,要先求函数的定义域,再求解关于导数的不等式可得,侧重考查数学运算的核心素养.5.若展开式中第3项与第7项的系数相等,则展开式中二项式系数最大的项为()A. 252B. 70C. D. 【答案】B【解析】由题意可得,所以,则展开式中二项式系数最大的项为第五项,即,故选B.6.3名男生和2名女生排成一排,则女生互不相邻的排法总数为( )A. 120B. 12C. 60D. 72【答案】D【解析】【分析】先排男生,再把女生排进男生间的空隙,结合分步计数原理可得结果.【详解】先排男生共有种,男生排好后共有4个空隙,再把2个女生排进去共有种排法,所以符合条件的共有种排法.故选:D.【点睛】本题
4、主要考查排列问题,不相邻问题一般是利用插空法进行求解,侧重考查数学建模的核心素养.7.若关于的方程有两个实数根,则实数的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】分离参数,利用导数求解的单调性,结合图象可求实数的取值范围.【详解】由题意得,设,.当时,为增函数;当时,为减函数,且.所以有最大值,简图如下,由图可知,时符合题意.故选:C.【点睛】本题主要考查导数的应用,利用导数研究函数的性质,作出简图是求解的关键,侧重考查数学抽象的核心素养.8.用数字0,1,2,3,4,5可以组成没有重复数字的四位数的个数是( )A. 360B. 300C. 120D. 180【答案】B
5、【解析】【分析】先排首位,再排其它位数,结合分步计数原理可得结果.【详解】先排首位,共有5种方法;其它位数共有种排法,结合分步计数原理可得共有种方法.故选:B.【点睛】本题主要考查排列问题,特殊位置优先考虑安排,题目较为简单,属于基础题.9.已知函数的导函数为,在上满足,则下列一定成立的是( )A. B. C. D. 【答案】A【解析】【分析】构造函数,利用导数判断函数在上的单调性,可得出和的大小关系,由此可得出结论.【详解】令,则.由已知得,当时,.故函数在上是增函数,所以,即,所以故选:A.【点睛】本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查
6、推理能力,属于中等题.10.已知变量,且,若恒成立,则的最大值为( )A. B. C. D. 1【答案】A【解析】【分析】由可化为,设函数,可得答案.【详解】解:即化为,故在上为增函数,故的最大值为.故选.【点睛】本题主要考查函数的单调性及导数的应用,由已知构造出后求导是解题的关键.11.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( )A. 100种B. 60种C. 42种D. 25种【答案】C【解析】【分析】给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安
7、排方式的总数.【详解】甲可有3种安排方法,若甲先安排第1社区,则第2社区可安排1个、第3社区安排3个,共;第2社区2个、第3社区安排2个,共;第2社区3个,第3社区安排1个,共;故所有安排总数为.故选:C.【点睛】本题考查分类与分步计数原理、组合数的计算,考查分类讨论思想,考查逻辑推理能力和运算求解能力.12.已知函数,当时,恒成立,则的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】分析可得,显然在上恒成立,只需讨论时的情况即可,然后构造函数,结合的单调性,不等式等价于,进而求得的取值范围即可.【详解】由题意,若,显然不是恒大于零,故.,则在上恒成立;当时,等价于,因为,所
8、以.设,由,显然在上单调递增,因为,所以等价于,即,则.设,则.令,解得,易得在上单调递增,在上单调递减,从而,故.故选:A.【点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题.二填空题:本题共4小题,每小题5分,共20分13.函数的图象在点处的切线方程为_.【答案】【解析】【分析】求出和的值,利用点斜式可得出所求切线的方程,化为一般式即可.【详解】由题知,又,所以函数的图象在点处的切线方程为,即.故答案为:.【点睛】本题考查利用导数求函数的切线方程,考查导数几何意义的应用,属于基础题.14.设函数,则满足不等式的实数的取值范围是_【答案】【解
9、析】【分析】先利用导数判断的单调性,再结合单调性可求实数的取值范围.【详解】因为,所以为增函数,因为,所以,即;因为的定义域为,所以,解得.故答案为:.【点睛】本题主要考查利用导数求解不等式,用导数判断函数的单调性是求解的关键,忽视函数的定义域是本题的易错点,侧重考查数学抽象的核心素养.15.有7张卡片分别写有数字从中任取4张,可排出不同的四位数的个数是_【答案】114【解析】【分析】根据题意,按取出数字是否重复分4种情况讨论:、取出的4张卡片中没有重复数字,即取出的4张卡片中的数字为1、2、3、4;、取出的4张卡片中4有2个重复数字,则2个重复的数字为1或2;若取出的4张卡片为2张1和2张2
10、;、取出的4张卡片种有3个重复数字,则重复的数字为1.分别求出每种情况下可以排出四位数的个数,由分类计数原理计算可得答案【详解】根据题意,分4种情况讨论:(1)取出的4张卡片中没有重复数字,即取出的4张卡片中的数字为1、2、3、4,此时=24种顺序,可以排出24个四位数;(2)取出的4张卡片中有2个重复数字,则2个重复的数字为1或2,若重复的数字为1,在2、3、4中取出2个,有种取法,安排在四个位置中,有种情况,剩余位置安排数字1,可以排出312=36个四位数,同理,若重复的数字为2,也可以排出36个重复数字;(3)若取出的4张卡片为2张1和2张2,在4个位置安排两个1,有种情况,剩余位置安排
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-312320.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2018高考语文异构异模复习考案课件 专题九 古代诗歌阅读 9-4 .ppt
