《解析》陕西省咸阳市2020届高三第一次高考模拟检测数学(理)试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析 解析陕西省咸阳市2020届高三第一次高考模拟检测数学理试题 WORD版含解析 陕西省 咸阳市 2020 届高三 第一次 高考 模拟 检测 数学 试题 WORD
- 资源描述:
-
1、高考资源网() 您身边的高考专家咸阳市2020年高考模拟检测(一)数学(理科)试题注意事项:1.本试卷共4页,满分150分,时间120分钟;2.答卷前,考生须准确填写自己的姓名.准考证号,并认真核准条形码上的姓名、准考证号;3.第I卷选择题必须使用2B铅笔填涂,第II卷非选择题必须使用0.5毫米黑色墨水签字笔书写,涂写要工整、清晰;4.考试结束,监考员将试题卷、答题卡一并收回.第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设,则( )A. B. C. D. 【答案】B【解析】【分析】在等式的两边同时除以,利用复数的
2、除法法则可求出复数.【详解】,.故选:B.【点睛】本题考查复数的求解,涉及复数的除法,考查计算能力,属于基础题.2.已知集合,则中元素的个数为( )A. 3B. 2C. 1D. 0【答案】B【解析】【分析】表示与的交点个数,由函数图象可确定交点个数,进而得到结果.【详解】由与图象可知,两函数图象有两个交点,如下图所示:中的元素个数为个故选:【点睛】本题考查集合运算中的交集运算,关键是明确交集表示的含义为两函数交点个数,通过数形结合的方式可得到结果.3.在平面直角坐标系中,为坐标原点,若绕点逆时针旋转得到向量,则( )A. B. C. D. 【答案】A【解析】【分析】由坐标可确定其与轴夹角,进而
3、得到与轴夹角,根据模长相等可得到坐标【详解】 与轴夹角为 与轴夹角为又 故选:【点睛】本题考查向量旋转后坐标的求解问题,关键是能够确定向量与轴的夹角的大小,进而根据模长不变求得向量.4.已知,则( )A. B. C. D. 【答案】C【解析】【分析】通过反例可否定;根据对数函数单调性可确定正确.【详解】若,中,则,错误;中,则,错误;中,在上单调递增 当时,正确;中,则,错误.故选:【点睛】本题考查根据不等式的性质比较大小的问题,涉及到对数函数单调性的应用,属于基础题.5.椭圆的一个焦点坐标为,则实数( )A. B. C. D. 【答案】D【解析】【分析】将椭圆的方程化为标准方程,结合该椭圆的
4、焦点坐标得出关于实数的方程,解出即可.【详解】椭圆的标准方程为,由于该椭圆的一个焦点坐标为,则,解得.故选:D.【点睛】本题考查利用椭圆的焦点坐标求参数,解题时要将椭圆方程化为标准方程,同时要注意确定椭圆的焦点位置,考查运算求解能力,属于基础题.6.的内角的对边分别为,若既是等差数列又是等比数列,则角的值为( )A. B. C. D. 【答案】C【解析】【分析】由等差中项和等比中项定义可得到的关系,代入余弦定理中可求得,进而得到结果.【详解】由题意得:,由余弦定理得: 故选:【点睛】本题考查余弦定理解三角形的问题,涉及到等差中项和等比中项的应用,属于基础题.7.如图,直三棱柱中,则异面直线和所
5、成角的余弦值为( )A. B. C. D. 【答案】D【解析】分析】利用三角形中位线性质平行移动至,在中利用余弦定理可求得,根据异面直线所成角的范围可知所求的余弦值为.【详解】连接交于点,取中点,连接设三棱柱为直三棱柱 四边形为矩形为中点 且又, 异面直线和所成角的余弦值为故选:【点睛】本题考查异面直线所成角的求解,关键是能够通过平移将异面直线所成角转化为相交直线所成角的求解问题;易错点是忽略异面直线所成角的范围,造成所求余弦值符号错误.8.函数,在中随机取一个数,使的概率为( )A. B. C. D. 【答案】C【解析】【分析】根据正弦函数的图象可确定时的取值范围,进而根据几何概型可求得结果
6、.【详解】当时, 所求概率故选:【点睛】本题考查几何概型概率问题的求解,涉及到根据正弦函数的函数值求解自变量的取值范围.9.已知,则的最小值为( )A. 10B. 9C. 8D. 7【答案】B【解析】【分析】由已知等式得到,利用可配凑出符合基本不等式的形式,利用基本不等式求得最小值.【详解】由得:(当且仅当,即时取等号)的最小值为故选:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于的式子进行应用,配凑成符合基本不等式的形式.10.已知曲线,则下面结论正确的是( )A. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B. 把上各点
7、的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线D. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【答案】D【解析】【分析】根据三角函数的周期变换和左右平移变换依次得到各选项中所得的函数解析式,从而得到正确选项.【详解】中,将横坐标缩短到原来的倍得:;向右平移个单位长度后得:,错误; 中,将横坐标伸长到原来的倍得:;向右平移个单位长度后得:,错误;中,将横坐标缩短到原来的倍得:;向左平移个单位长度后得:,错误;中,将横坐标伸长到
8、原来的倍得:;向左平移个单位长度后得:,正确.故选:【点睛】本题考查三角函数的周期变换和平移变换的问题,关键是能够准确掌握变换原则,得到变换后的函数解析式.11.设为上的奇函数,满足,且当时,则( )A. B. C. D. 【答案】A【解析】【分析】由可得对称轴,结合奇偶性可知周期为;可将所求式子通过周期化为,结合解析式可求得函数值.【详解】由得:关于对称又为上的奇函数 是以为周期的周期函数且故选:【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.12.已知双曲线的两个焦点分别为,,以为直径的圆交双曲线于,四
9、点,且四边形为正方形,则双曲线的离心率为( )A. B. C. D. 【答案】D【解析】【分析】设、分别为第一、二、三、四象限内的点,根据对称性可得出,将点的坐标代入双曲线的方程,即可求出双曲线的离心率.【详解】设双曲线的焦距为,设、分别为第一、二、三、四象限内的点,由双曲线的对称性可知,点、关于轴对称,、关于原点对称,、关于轴对称,由于四边形为正方形,则直线的倾斜角为,可得,将点的坐标代入双曲线的方程得,即,设该双曲线的离心率为,则,整理得,解得,因此,双曲线的离心率为.故选:D.【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题.第卷(共9
10、0分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线在点处的切线的方程为_【答案】【解析】【分析】对求导,带入得到斜率,通过点斜式得到切线方程,再整理成一般式得到答案.【详解】带入得切线的斜率,切线方程,整理得【点睛】本题考查导数的几何意义,通过求导求出切线的斜率,再由斜率和切点写出切线方程.难度不大,属于简单题.14.已知则_,_.【答案】 (1). (2). 【解析】【分析】根据已知条件利用二倍角余弦公式、两角和的正弦公式对式子进行化简成形式,即可求出、的值.【详解】所以故答案为: ;【点睛】本题考查了二倍角余弦公式、两角和正弦公式,属于较易题.15.如果几个函数的定义域
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-314321.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
