《随堂优化训练》2014年数学(人教A版)必修3课后作业:第3章 概率.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随堂优化训练
- 资源描述:
-
1、第三章概率3.1随机事件的概率3.1.1随机事件的概率1.下列现象是必然现象的是()A.某路口单位时间内发生交通事故的次数B.冰水混合物的温度是1C.三角形的内角和为180D.一个射击运动员每次射击都击中2.一个口袋内装有大小和形状都相同的一个白球和一个黑球,那么“从中任意摸出一个球,得到白球”这个事件()A.是必然事件B.是随机事件C.是不可能发生事件D.不能确定是哪种事件3.事件A的概率P(A)满足()A.P(A)0 B.P(A)1C.0P(A)0,且a1)在(,)上是增函数”是不可能事件,则a满足的条件是_.(2)事件“圆(xa)2(yb)2r2内的点的坐标可使不等式(xa)2(yb)2
2、r2成立”是_事件.9.盒中装有4个白球,5个黑球,从中任意取出1个球.问:(1)“取出的球是黄球”是什么事件?它的概率是多少?(2)“取出的球是白球”是什么事件?它的概率是多少?(3)“取出的球是白球或是黑球”是什么事件?它的概率是多少?10.如图313,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:图313所用时间/分钟10202030304040505060选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、
3、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径?3.1.2概率的意义1.某地天气预报说:“明天本地降雨的概率为80%”,这是指()A.明天该地区约有80%的时间会下雨,20%的时间不下雨B.明天该地区约有80%的地方会下雨,20%的地方不下雨C.明天该地区下雨的可能性为80%D.该地区约有80%的人认为明天会下雨,20%的人认为明天不下雨2.小张做四选一的选择题8道,由于全部都不会做,他只能随机选取一个选项,则下列说法正确的是()A.不可能全选错B.可能全选正确C.每道题选正确的可能性不相等D.一定全选错3.下
4、列说法中,正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间降雨B.“抛一枚硬币正面朝上的概率是0.5”表示每抛硬币2次就有1次出现正面朝上C.“彩票中奖的概率是1%”表示买100张彩票一定有1张会中奖D.在同一年出生的367名学生中,至少有两人的生日是同一天4.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大5.甲、乙两人玩游戏,袋中装有2个红球,2个白球,现从中(不放回
5、)任取2个球,若同色则甲胜,否则乙胜.那么甲获胜的概率_乙获胜的概率(填“相等”、“大于”、“小于”).6.下列说法中:任何事件的概率总是在(0,1)之间;某事件的概率值是主观存在的,与试验次数有关;概率是随机的,在试验前不能确定.其中错误的是_(填序号).7.在一次考试中,某班学生的及格率是80%,这里所说的80%是_(填“概率”或“频率”).8.某节能灯生产厂家说其灯泡能点1000小时以上的概率是0.86,这句话中概率的意义是_.9.对某厂生产的某种产品进行抽样检查,数据如下表:抽取件数/件50100200300500合格件数/件4796189285476根据以上数据,若要从该厂生产的这种
6、产品中抽取950件合格品,大约需抽取_件产品.10.回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.650.601.25?为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.250.500.75?为什么?11.(2012年湖南改编)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示:一次购物量/件1458912131617以上顾客数/人x3025y10结算时间/(分钟/人)1
7、1.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%.(1)确定x,y的值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率(将频率视为概率).3.1.3概率的基本性质1.抛掷一枚骰子,与事件“点数是偶数”互斥但不对立的事件是()A.“点数是奇数”B.“点数是3的倍数”C.“点数是1或3”D.“点数是小于5的偶数”2.抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为() A.至多有2件次品 B.至多有1件次品C.至多有2件正品 D.至少有2件正品3.甲、乙两人下棋,甲胜的概率为0.4,甲不输的概率为0.9,则甲、乙两人和棋的概率为()A.0.6 B.0.
8、3 C.0.1 D.0.54.第16届亚运会于2010年11月12日在中国广州举行,运动会期间有来自A大学2名、B大学4名的大学生志愿者.现从这6名志愿者中,随机抽取2名到体操比赛场服务,则至少有1名A大学的志愿者的概率是()A. B. C. D.5.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是()A.AB与C是互斥事件,也是对立事件B.BC与D是互斥事件,也是对立事件 C.AC与BD是互斥事件,但不是对立事件D.A与BCD是互斥事件,也是对立事件6.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.2
9、3,0.25,0.28,则该射手在一次射击中,(1)命中10环或9环的概率为_;(2)命中少于7环的概率为_.7.由经验得知:在中华商场排队等候付款的人数及其概率如下表:排队人数012345人以上概率0.100.160.300.300.100.04(1)求至少有1人排队的概率;(2)求至多2人排队的概率;(3)求至少2人排队的概率.8.甲、乙两人射击,甲射击一次,中靶概率是p1,乙射击一次,中靶概率是p2,已知,是方程x25x60的根,且p1满足方程pp10,则甲射击一次,不中靶的概率为_;乙射击一次,不中靶的概率为_.9.抛掷一均匀的正方体玩具(各面分别标有数1,2,3,4,5,6),若事件
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2018年秋高中语文苏教版同步选修写作课件:言之无文行而不远——语言的锤炼 .ppt
