分享
分享赚钱 收藏 举报 版权申诉 / 18

类型江苏省无锡市2019-2020学年高二数学上学期期末考试试题(含解析).doc

  • 上传人:a****
  • 文档编号:328208
  • 上传时间:2025-11-27
  • 格式:DOC
  • 页数:18
  • 大小:1.39MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏省 无锡市 2019 2020 学年 数学 学期 期末考试 试题 解析
    资源描述:

    1、江苏省无锡市2019-2020学年高二数学上学期期末考试试题(含解析)一、选择题:1.设,则下列不等式一定成立的是A. B. C. D. 【答案】B【解析】【分析】直接利用不等式性质:在两边同时乘以一个负数时,不等式改变方向即可判断【详解】, 故选B【点睛】本题主要考查了不等式的性质的简单应用,属于基础试题2.已知向量,.若向量与向量平行,则实数的值是( )A. 6B. -6C. 4D. -4【答案】D【解析】【分析】求出向量的坐标,利用向量共线定理即可得出【详解】解:,又因为向量与向量平行所以存在实数,使得解得故选:【点睛】本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题3.已知

    2、椭圆:,若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A. B. C. D. 【答案】B【解析】椭圆长轴为,焦点恰好三等分长轴,所以椭圆方程为,故选B.4.九章算术是我国古代的数学名著,书中有如下问题:“今有大夫、不更、簪裹、上造、公士、凡五人,共猎得五鹿,欲以爵次分之,问各得几何?”其意思:“共有五头鹿,5人以爵次进行分配(古代数学中“以爵次分之”这种表达,一般表示等差分配,在本题中表示等差分配)”在这个问题中,若大夫得“一鹿、三分鹿之二”,则公士得()A. 三分鹿之一B. 三分鹿之二C. 一鹿D. 一鹿、三分鹿之一【答案】A【解析】分析: 本题考查阅读理解能力,抽象概括

    3、能力,解题关键是从题中得出5人所得依次成等差数列,其中,要求,由等差数列的前项和公式易解得详解:显然5人所得依次成等差数列,设公士所得为,则,解得故选A点睛:本题考查等差数列的应用,考查数学文化,九章算术是我国古代的数学名著,书中集成了许多数学问题,它的出现,标志着中国古代数学体系的形成5.已知等比数列为单调递增数列,设其前项和为,若,则的值为( )A. 16B. 32C. 8D. 【答案】A【解析】【分析】利用等比数列的通项公式、前项和公式列出方程组,求出首项和公比,由此能求出【详解】解:等比数列为单调递增数列,设其前项和为,解得,故选:【点睛】本题考查数列的第5项的求法,考查等比数列的性质

    4、等基础知识,考查推理能力与计算能力,属于基础题6.下列不等式或 命题一定成立的是( ); ; 最小值为2.A. B. C. D. 【答案】C【解析】【分析】根据基本不等式的性质一一验证.【详解】解:,由基本不等式可得当且仅当时取等号,故正确; 可以取负值,故不成立,故错误;由基本不等式可得当且仅当时取等号,故正确;当时故错误.故选:【点睛】本题考查基本不等式应用,属于基础题.7.已知关于的不等式的解集为空集,则实数的取值范围是( )A. B. C. D. 【答案】C【解析】【分析】由题意得出关于的不等式的解集为,由此得出或,在成立时求出实数的值代入不等式进行验证,由此解不等式可得出实数的取值范

    5、围.【详解】由题意知,关于的不等式的解集为.(1)当,即当时,不等式化为,合乎题意;当时,不等式化为,即,其解集不为,不合乎题意;(2)当,即时关于的不等式的解集为.,解得综上可得,实数的取值范围是故选C【点睛】本题考查二次不等式在上恒成立问题,求解时根据二次函数图象转化为二次项系数和判别式的符号列不等式组进行求解,考查化归与转化思想,属于中等题.8.设为数列的前项和,满足,则( )A. B. C. D. 【答案】D【解析】【分析】根据可求数列的通项公式,利用等比数列的前项和求.【详解】解:当时,解得,当时,故是以,的等比数列,故选:【点睛】本题考查利用求,以及等比数列的前项和,属于基础题.9

    6、.若正数、满足,设,则的最大值是( )A. 12B. -12C. 16D. -16【答案】A【解析】【分析】根据则,将式子换元成关于的二次函数,利用二次函数的性质求最值,值得注意的取值范围.【详解】解:、解得当且仅当时取得最大值故选:【点睛】本题考查二次函数的性质,重要不等式的应用,属于中档题.10.正四面体的棱长为2,、分别为、的中点,则的值为( )A. -2B. 4C. 2D. 1【答案】D【解析】【分析】如图所示,代入,利用数量积运算性质即可得出详解】解:如图所示,故选:【点睛】本题考查了向量数量积的运算性质、平行四边形法则,考查了推理能力与计算能力,属于中档题11.已知椭圆的左右焦点分

    7、别为,离心率为,若椭圆上存在点,使得,则该离心率的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由结合椭圆离心率的定义可得,可求得,而,从而可求得离心率的取值范围【详解】解:依题意,得,又,不等号两端同除以得,解得,又,即故选:【点睛】本题考查椭圆的离心率及椭圆的简单几何性质,求得,利用解决问题是关键,也是难点,属于中档题12.当为正整数时,定义函数表示的最大奇因数.如,则( )A. 342B. 345C. 341D. 346【答案】A【解析】,而,又,故选A.二、填空题13.命题“,都有”的否定:_.【答案】,使得【解析】【分析】根据全称命题的否定是特称命题,即可得到结论

    8、【详解】解:命题是全称命题,则命题的否定是:,有;故答案为:,有【点睛】本题主要考查含有量词的命题的否定,比较基础14.不等式的解集是_【答案】【解析】【分析】将分式不等式转化为整式不等式,解得.【详解】解:故不等式的解集为:故答案为:【点睛】本题考查分式不等式的解法,属于基础题.15.已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的渐近线方程为 【答案】【解析】试题分析:因为双曲线的离心率为2,所以1+=4,=3,又双曲线焦点与椭圆的焦点相同,即焦点在x轴上,故双曲线的渐近线方程为考点:本题主要考查椭圆、双曲线的标准方程及几何性质点评:基础题,圆锥曲线中A,b,c,e关系要熟悉,并

    9、做到灵活运用16.已知,那么的最小值为_.【答案】10【解析】【分析】先根据条件消掉,即将代入原式得,再裂项并用贴“1”法,最后运用基本不等式求其最小值【详解】解:因为,所以,因此,当且仅当:,即时,取“”,即的最小值为:,故答案为:【点睛】本题主要考查了基本不等式在求最值问题中的应用,涉及消元,裂项,凑配,贴1等恒等变形,以及取等条件的确定,属于难题三、解答题:17.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2)【解析】试题分析:(1)根据等差数列基本量的运算求得,故可得通项公式(2)根据数列通项公式的特点利用裂项相消法求和试题解析:(

    10、1)设等差数列的公差为,由题意得,解得 (2)由(1)得 18.已知,函数(1)若对(0,2)恒成立,求实数a的取值范围;(2)当a1时,解不等式【答案】(1);(2).【解析】【分析】(1)分离参数a,构造函数利用均值不等式求最值即可;(2)分类讨论去绝对值,最后取并集即可【详解】(1)f(x)2x对x(0,2)恒成立,a+2x对x(0,2)恒成立,+2x2,当且仅当=2x,即x=时等号成立,a(2)当a=1时,f(x)=1,f(x)2x,12x,若x0,则12x可化为:2x2x+10,所以x;若x0,则12x可化为:2x2x10,解得:x1或x,x0,x,由可得12x的解集为:(,【点睛】

    11、本题考查了不等式恒成立及分类讨论思想,属中档题19.在平面直角坐标系中,曲线上的动点到点的距离减去到直线的距离等于1.(1)求曲线的方程;(2)若直线 与曲线交于,两点,求证:直线与直线的倾斜角互补.【答案】(1);(2)见解析【解析】【分析】(1)利用抛物线定义“到定点距离等2于到定直线距离的点的轨迹”求动点的轨迹;(2)设直线与抛物线方程联立化为,由于,利用根与系数的关系与斜率计算公式可得:直线与直线的斜率之和0,即可证明【详解】(1)曲线上的动点到点的距离减去到直线的距离等于1,所以动点到直线的距离与它到点的距离相等,故所求轨迹为:以原点为顶点,开口向右的抛物线;(2)证明:设.联立,得

    12、,(),,,直线线与直线的斜率之和:因为直线与直线的斜率之和为,直线与直线的倾斜角互补.【点睛】本题考查了直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题20.某种汽车购买时费用为144万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,依等差数列逐年递增()设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;()求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少)【答案】(1);(2)12年.【解析】【分析】(I)由已知中某种汽车购买时

    13、费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,依等差数列逐年递增,根据等差数列前n项和公式,即可得到f(n)的表达式;(II)由(I)中使用n年该车的总费用,我们可以得到n年平均费用表达式,根据基本不等式,我们易计算出平均费用最小时的n值,进而得到结论【详解】(I=()设该车的年平均费用为S万元,则有仅当n=12时,等号成立. 汽车使用12年报废为宜.【点睛】本题主要考查等差数列的应用,读懂题意,转化为等差数列求和,利用基本不等式求最值是解题的关键,属于中点题.21.如图,在高为的等腰梯形中,且,将它沿对

    14、称轴折起,使平面平面,如图,点为的中点,点在线段上(不同于,两点),连接并延长至点,使.(1)证明:平面;(2)若,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)建立空间直角坐标系,把证明平面的问题转化为证明,即可;(2)求出平面的法向量为和平面的一个法向量为,把求二面角的余弦值的问题转化为求与的夹角的余弦值的问题即可.【详解】(1)证明:由题设知,两两垂直,所以为坐标原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系,设的长为,则,).因为点为的中点,所以,所以,.因为,所以,又与不共线,所以平面.(2)解因为,所以,则,所以,.设平面的法向量为,由得令,

    15、则,.易得平面的一个法向量为.设二面角的大小为,由图可知,为锐角,则,即二面角的余弦值为.【点睛】本题主要考查利用空间向量的有关知识证明线面垂直及求二面角的平面角问题,求出平面的法向量是解决问题的关键,属常规考题.22.已知椭圆:(),F为左焦点,A为上顶点,为右顶点,若,抛物线顶点在坐标原点,焦点为F(1)求的标准方程;(2)是否存在过F点的直线,与和交点分别是P,Q和M,N,使得?如果存在,求出直线的方程;如果不存在,请说明理由【答案】(1);(2)或【解析】分析:(1)由题设有,再根据可得的值,从而得到椭圆的标准方程.(2)因为,故,设直线方程为,分别联立直线与椭圆、直线与抛物线的方程,消去后利用韦达定理用表示,解出后即得直线方程.详解:(1)依题意可知,即,由右顶点为得,解得,所以的标准方程为.(2)依题意可知方程为,假设存在符合题意的直线,设直线方程为,联立方程组,得,由韦达定理得,则,联立方程组,得,由韦达定理得,所以,若,则,即,解得,所以存在符合题意的直线方程为或.点睛:求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等.直线与圆锥曲线的位置关系中的弦长、面积等问题,可以利用韦达定理把弦长、面积等表示为直线方程中某参数的函数关系式,进而把弦长、面积等问题归结为方程的解或函数的值域等问题.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏省无锡市2019-2020学年高二数学上学期期末考试试题(含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-328208.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1