江苏省歌风中学如皋办学2016届高三数学复习专题圆锥曲线第二讲双曲线.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 中学 如皋 办学 2016 届高三 数学 复习 专题 圆锥曲线 第二 双曲线
- 资源描述:
-
1、专题 圆锥曲线:第二讲 双曲线活动一:基础检测1(2011安徽改编)双曲线2x2y28的实轴长是_2已知双曲线1 (b0)的左、右焦点分别为F1、F2,其中一条渐近线方程为yx,点P(,y0)在该双曲线上,则_.3(2011课标全国改编)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为_4已知点(m,n)在双曲线8x23y224上,则2m4的范围是_5、(苏锡常镇四市2014届高三5月调研(二)在平面直角坐标系xOy中,已知双曲线的一个焦点为(5,0),则实数m = 活动二:探究点一 双曲线的定义及应用例1已知动圆M与圆C1
2、:(x4)2y22外切,与圆C2:(x4)2y22内切,求动圆圆心M的轨迹方程探究点二求双曲线的标准方程例2已知双曲线的一条渐近线方程是x2y0,且过点P(4,3),求双曲线的标准方程变式迁移2(2010安庆模拟)已知双曲线与椭圆1的焦点相同,且它们的离心率之和等于,则双曲线的方程为_探究点三 双曲线的性质及应用例3(泰州市2015届高三第二次模拟考试)已知双曲线的渐近线方程为,则 变式迁移3(泰州市2015届高三上期末)双曲线的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率 活动三:自主检测一、填空题1设点P在双曲线1上,若F1、F2为双曲线的两个焦点,且PF1PF213,则F
3、1PF2的周长为_2(2011苏州模拟)过双曲线1 (a0,b0)的右焦点F作圆x2y2a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率为_3双曲线1的左焦点为F1,左、右顶点分别为A1、A2,P是双曲线右支上的一点,则分别以PF1和A1A2为直径的两圆的位置关系是_4(2011山东改编)已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为_5(2011上海)设m是常数,若点F(0,5)是双曲线1的一个焦点,则m_.6设圆过双曲线1的一个顶点和一个焦点,圆心在此双曲线上,则此圆心到双曲线中心的距离
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
