上海市崇明县2013届高三二模考试数学(文)试题解析版 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 上海市崇明县2013届高三二模考试数学文试题解析版 WORD版含解析 上海市 崇明县 2013 届高三二模 考试 数学 试题 解析 WORD
- 资源描述:
-
1、高考资源网() 您身边的高考专家2013年上海市崇明县高考数学二模试卷(文科)参考答案与试题解析一、填空题(本大题共14小题,每小题4分,满分56分,只需将结果写在答题纸上)1(4分)(2013崇明县二模)已知aR,若(3+2i)ai(32i)(i为虚数单位)为纯虚数,则a的值等于考点:复数的基本概念3801346专题:计算题分析:先根据复数的基本运算化成a+bi的形式,然后根据纯虚数的概念建立等式,可求出a的值解答:解:(3+2i)ai(32i)=32a+(23a)i(3+2i)ai(32i)(i为虚数单位)为纯虚数(3+2i)ai(32i)的实部为0即32a=0解得a=故答案为:点评:本题
2、主要考查了纯虚数的概念,以及复数的基本运算,属于基础题,容易题2(4分)(2013崇明县二模)若,则行列式=考点:二倍角的余弦3801346专题:计算题分析:根据行列式的运算法则可得式=cos2sin2,再利用二倍角的余弦公式化为 12sin2,运算得结果解答:解:则行列式=cos2sin2=12sin2=12=,故答案为 点评:本题考查行列式的运算,二倍角的余弦公式的应用,把要求的式子化为12sin2,是解题的关键3(4分)(2013崇明县二模)直线ax+2y+3a=0与直线3x+(a1)y=a7平行,则实数a=3考点:直线的一般式方程与直线的平行关系3801346专题:计算题分析:由题意可
3、得这两条直线的斜率都存在且相等,故,由此求得 a的值解答:解:直线ax+2y+3a=0与直线3x+(a1)y=a7平行,故它们的斜率都存在且相等,解得 a=3故答案为 3点评:本题主要考查两直线平行的性质,两直线平行,斜率相等,属于基础题4(4分)(2013崇明县二模)已知函数y=f1(x)是函数f(x)=2x1(x1)的反函数,则f1(x)=1+log2x(x1)考点:反函数3801346专题:计算题分析:先令y=f(x)=2x1,x1,用y表示出x,再交换x,y的位置,即可得出反函数,然后根据原函数的值域即为反函数的定义域解答:解:令y=f(x)=2x1,x1,由有x=log2y+1故函数
4、的反函数的解析式是y=log2x+1又函数f(x)=2x1(x1)的值域的范围是y|y1,故反函数的自变量的取值范围是x1所求的反函数是f1(x)=1+log2x(x1)故答案为:1+log2x(x1)点评:本题考查反函数,解答本题关键是掌握反函数的定义,由定义求出反函数,求解本题有一个易错点,即忘记求反函数的定义域,一般求函数的题都要求给出定义域,属于基础题5(4分)(2013崇明县二模)已知全集U=R,A=x|x22x0,B=x|log2x+10,则A(CUB)=(0,)考点:交、并、补集的混合运算3801346分析:由题设条件先分别求出集合A和B,再由补集的运算求出CUB,然后再求ACU
5、B解答:解:A=x|x22x0=(0,2)B=x|log2x+10=【,+)CUB=(,)A(CUB)=(0,)故答案为:(0,)点评:本题考查集合的交、并、补集的运算,解题时要认真审题,仔细解答,注意对数性质的灵活运用6(4分)(2013崇明县二模)如图所示的算法流程图中,若f(x)=2x+3,g(x)=x2,若输入x=e(e=2.7182),则输出h(x)的值等于2e+3考点:选择结构3801346专题:图表型分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算两个函数值中较大者,代入x=e比较大小函数值的大小,即可得到答案解答:解:分析程序中各变量、各语
6、句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算两个函数f(x)=2x+3,g(x)=x2值中较大者的值,x=e时,f(e)=2e+3,g(e)=e2,e22e+3则输出h(x)的值等于2e+3故答案为:2e+3点评:要判断程序的运行结果,我们要先根据已知判断程序的功能,构造出相应的数学模型,转化为一个数学问题7(4分)(2013崇明县二模)在直角ABC中,C=90,A=30,BC=1,D为斜边AB的中点,则 =1考点:平面向量数量积的运算3801346专题:计算题分析:根据含有30角的直角三角形的性质,得到AB与CD的长度,求出两个向量的夹角是120,利用向量的数量积公式写出表示式
7、,得到结果解答:解:C=90,A=30,BC=1,AB=2D为斜边AB的中点,CD=AB=1,CDA=1803030=120=21cos120=1,故答案为:1点评:本题考查平面向量的数量积的运算,考查含有30角的直角三角形的性质,是一个基础题8(4分)(2013崇明县二模)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5现从一批该日用品中抽取200件,对其等级系数进行统计分析,得到频率f的分布表如下:X12345fa0.20.450.150.1则在所抽取的200件日用品中,等级系数X=1的件数为20考点:频率分布表3801346专题:计算题;概率与统计分析:通过频率和为
8、1,求出a,然后求出所抽取的200件日用品中,等级系数X=1的件数解答:解:因为所抽个体的频率和为1,所以a+0.2+0.45+0.15+0.1=1,a=0.1,所以所抽取的200件日用品中,等级系数X=1的件数为:2000.1=20故答案为:20点评:本题考查分层抽样,频率的应用,考查计算能力9(4分)(2013崇明县二模)展开式的常数项等于考点:二项式定理3801346专题:计算题分析:先求出 的展开式的通项公式,再令通项公式中x的幂指数为0,求得r的值,即可求得展开式的常数项解答:解:的展开式的通项公式为 Tr=x142r(1)r=(1)r,令 14=0,解得 r=6,故常数项为 =,故
9、答案为 点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题10(4分)(2013崇明县二模)已知圆柱M的底面圆的半径与球O的半径相同,若圆柱M与球O的表面积相等,则它们的体积之比V圆柱:V球=(用数值作答)考点:球的体积和表面积3801346分析:由已知中圆柱M的底面圆的半径与球O的半径相同,若圆柱M与球O的表面积相等,我们易求出圆柱的高与圆柱底面半径的关系,进而求出圆柱和球的体积后,即可得到V圆柱:V球的值解答:解:设圆柱M的底面圆的半径与球O的半径均为R,M的高为h则球的表面积S球=4R2又圆柱M与球O的表面积相等即4R2=2R2+2Rh解得h=R则
10、V圆柱=R3,V球=V圆柱:V球=故答案为:点评:本题考查的知识点是球的体积和表面积,圆柱的体积和表面积,其中根据已知求出圆柱的高,是解答本题的关键11(4分)(2013崇明县二模)某四棱锥底面为直角梯形,一条侧棱与底面垂直,四棱锥的三视图如图所示,则其体积为考点:由三视图求面积、体积3801346专题:空间位置关系与距离分析:由俯视图可知该四棱锥的底面的面积=,由正视图和侧视图可知该几何体的高为1,据此可以求出该几何体的体积解答:解:由俯视图可知该四棱锥的底面的面积=,由正视图和侧视图可知该几何体的高为1故该几何体的体积=故答案为点评:本题考查的是由三视图求原几何体四棱锥的体积,只要由俯视图
11、求出底面的面积,由主视图和侧视图求出高,就可以求出体积12(4分)(2013崇明县二模)若数列an满足,则=1考点:数列的极限3801346专题:综合题分析:数列的奇数项与偶数项分别组成以1,为首项,为公比的等比数列,利用无穷等比数列的求和公式,即可得到结论解答:解:由题意,数列的奇数项与偶数项分别组成以1,为首项,为公比的等比数列=+=1故答案为:1点评:本题考查数列的极限,解题的关键是确定数列的奇数项与偶数项分别组成以1,为首项,为公比的等比数列13(4分)(2013崇明县二模)某班班会准备从含甲、乙的7名学生中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺
12、序不能相邻,那么不同的发言顺序种类为600考点:排列、组合及简单计数问题3801346专题:计算题分析:根据题意,分2种情况讨论,只有甲乙其中一人参加,甲乙两人都参加,再由加法原理计算可得答案解答:解:根据题意,分2种情况讨论,若甲乙其中一人参加,有=480种情况;若甲乙两人都参加,有=240种情况,其中甲乙相邻的有=120种情况;则不同的发言顺序种数480+240120=600种,故答案为:600点评:本题考查排列、组合知识,考查计数原理,利用加法原理,正确分类是关键14(4分)(2013崇明县二模)设M为平面内一些向量组成的集合,若对任意正实数和向量M,都有M,则称M为“点射域”,在此基础
13、上给出下列四个向量集合:(x,y)|yx2;(x,y)|;(x,y)|x2+y22y0;(x,y)|3x2+2y2120其中平面向量的集合为“点射域”的序号是考点:元素与集合关系的判断3801346专题:计算题;新定义分析:根据题中“点射域”的定义对各个选项依次加以判别,可得都存在反例,说明它们不是“点射域”,而通过验证可知它符合“点射域”的定义,是正确选项解答:解:根据“点射域”的定义,可得向量M时,与它共线的向量M也成立,对于,M=(x,y)|yx2表示终点在抛物线yx2上及其张口以内的向量构成的区域,向量=(1,1)M,但3=(3,3)M,故它不是“点射域”;对于,M=(x,y)|,可得
14、任意正实数和向量M,都有M,故它是“点射域”;对于,M=(x,y)|x2+y22y0,表示终点在圆x2+y22y=0上及其外部的向量构成的区域,向量=(0,2)M,但=(0,1)M,故它不是“点射域”;对于,M=(x,y)|3x2+2y2120,表示终点在椭圆+=1内部的向量构成的区域,向量=(1,1)M,但3=(3,3)M,故它不是“点射域”综上所述,满足是“点射域”的区域只有故答案为:点评:本题给出特殊定义,叫我们判断符合题的选项,着重考查集合与元素的关系和向量的性质等知识,属于基础题二、选择题(本大题共4小题,满分20分,每小题给出四个选项,其中有且只有一个结论是正确的,选对并将答题纸对
15、应题号上的字母涂黑得5分,否则一律得零分)15(5分)(2013崇明县二模)已知函数f(x)=(cos2xcosx+sin2xsinx)sinx,xR,则f(x)是()A最小正周期为的奇函数B最小正周期为的偶函数C最小正周期为的奇函数D最小正周期为的偶函数考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的奇偶性3801346专题:计算题分析:先对函数化简可得f(x)=(cos2xcosx+sin2xsinx)sinx=cos2xcosxsinx+sin2xsin2x=,由周期公式可求T,再检验f(x)与f(x)的关系即可判断奇偶性解答:解:f(x)=(cos2xcosx+si
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
2021全国统考语文人教版一轮课件:13-2-2 概括内容要点两题型 .ppt
