分享
分享赚钱 收藏 举报 版权申诉 / 26

类型江西省2022年高考数学二轮复习 小题精做系列专题02.docx

  • 上传人:a****
  • 文档编号:332618
  • 上传时间:2025-11-27
  • 格式:DOCX
  • 页数:26
  • 大小:1.27MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江西省2022年高考数学二轮复习 小题精做系列专题02 江西省 2022 年高 数学 二轮 复习 小题精做 系列 专题 02
    资源描述:

    1、江西省2022年高考数学二轮复习 小题精做系列专题02一、选择题1已知命题,使为偶函数;命题,则下列命题中为真命题的是( )A. B. C. D.【答案】C【解析】2已知命题p:“xR,mR,使4x2xm10”若命题p为真命题,则实数m的取值范围是A. (,2 B. 2,+) C. (,2) D. (2,+)【答案】A【解析】 3已知,则、的大小关系是( )A BC D 【答案】B【解析】试题分析:因为 ,所以,即,选.【考点定位】幂函数、指数函数、对数函数的性质. 4已知x,yR,i为虚数单位若1yi,则xyi()A2i B12i C12i D2i【答案】A【解析】由1yi,得i1yi,所以

    2、x2,y1,xyi2i. 【考点定位】复数的基本计算.5若点在函数的图像上,点在函数的图像上,则的最小值为( ) (A) (B) 2 (C) (D)8【答案】D【解析】6右图可能是下列哪个函数的图象( ) A.y=2xx21 B. C.y=(x22x)ex D. 【答案】C【解析】7已知函数,若存在实数满足,且,则的取值范围( )A.(20,32) B.(9,21) C.(8,24) D.(15,25)【答案】B【解析】8设且.若对恒成立,则的取值范围是()A. B. C. D.9已知,若,则下列正确的是( )A B C D【答案】C 也就是,而,所以即,选C.【考点定位】1.正弦函数的图像与

    3、性质;2.函数的奇偶性.10函数的最小正周期为( )A B C D【答案】【解析】11已知x,y满足,则的取值范围是( )A B C D【答案】C【解析】12某几何体的主视图与左视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是( )【答案】C【解析】13设点是区域内的随机点,函数在区间上是增函数的概率为 ( ) A. B. C. D. 【答案】A【考点定位】1.线性规划问题.2.函数的单调性.3.几何概型问题. 14设双曲线的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若,则该双曲线的离心率为( )AB2CD【答案】

    4、D【解析】 15已知双曲线C:的离心率为2,为期左右顶点,点P为双曲线C在第一象限的任意一点,点O为坐标原点,若的斜率为,则的取值范围为( )A. B. C. D. 16已知数列是首项为,公差为的等差数列,若数列是等比数列,则其公比为( )A. B. C. D. 因为,所以公比【考点定位】等比数列17执行如图所示的程序框图,输入的N2022,则输出的S( )A2022 B2022 C2022 D2022【答案】C【解析】二、填空题18已知, , ,则与的夹角的取值范围是_.【答案】【解析】 法二、因为,所以,所以点A在以C为圆心为半径的圆上. 作出图形如下图所示,从图可知与的夹角的取值范围是.

    5、【考点定位】向量.三、解答题19已知函数.(1)当时,求的单调区间;(2)若不等式有解,求实数m的取值菹围;(3)证明:当a=0时,.【答案】(1)参考解析;(2);(3)参考解析【解析】试题分析:(1)由于,.需求的单调区间,通过对函数求导,在讨论的范围即可得函数的单调区间.增.当时,所以单调递减.综上所述:当时,在单调递增;当时,在上单调递增,在单调递减.【考点定位】1.函数的单调性.2.含不等式的证明.3.构建新的函数问题.4.运算能力.5.数学知识综合应用.20已知函数(1)讨论函数的单调性;(2)若时,关于的方程有唯一解,求的值;(3)当时,证明: 对一切,都有成立【答案】详见解析【

    6、解析】当k是奇数时,则f(x)在(0,+)上是增函数;当k是偶数时,则 所以当x时,当x时, 故当k是偶数时,f (x)在上是减函数,在上是增函数 4分另解:即有唯一解,所以:,令,则,设,显然是增函数且,所以当时【考点定位】1.导数的运用;2.方程及不等式. 21已知函数,.(1)a2时,求F(x)=f(x)-g(x)的单调区间;(2)设h(x)=f(x)+g(x),且h(x)有两个极值点为,其中,求的最小值.【答案】(1)详见解析;(2).【解析】试题解析:(1)由题意,其定义域为,则,2分对于,有.当时,的单调增区间为;当时,的两根为,(2)对,其定义域为. 求导得,由题两根分别为,则有

    7、, 8分,从而有22已知函数,的最大值为2(1)求函数在上的值域;(2)已知外接圆半径,角所对的边分别是,求的值【答案】(1);(2).【解析】而,于是, 4分23在中,角、所对的边分别为、,已知(),且(1)当,时,求,的值;(2)若为锐角,求实数的取值范围【答案】(1) 或;(2)【解析】又,所以或 (5分)(少一组解扣1分)【考点定位】(1)正弦定理;(2)余弦定理及三角函数值的范围.24设等差数列 的前n项和为Sn,且S4=4S2,(1)求数列的通项公式;(2)设数列 满足,求的前n项和Tn;(3)是否存在实数K,使得Tn恒成立.若有,求出K的最大值,若没有,说明理由.【答案】(1)a

    8、n=2n1,nN*;(2);(3).【解析】试题分析:(1)由于an是等差数列,故只需求出其首项a1和公差d即可得其通项公式.由S4=4S2,a2n=2an+1得方程组:,这个方程组中,看起来有3个未知数,但n抵消了(如果 ,解得a1=1,d=2an=2n1,nN*(2)由已知,得:当n=1时,所以.【考点定位】1、等差数列与等比数列;2、数列的和;3、数列与不等式.25已知等比数列的各项均为正数,且成等差数列,成等比数列.(1)求数列的通项公式;(2)已知,记,,求证:【答案】(1);(2)参考解析【解析】 试题分析:(1)又等比数列的各项均为正数,且成等差数列,成等比数列.可得到两个等式,

    9、解方程组可得结论.(2)由(1)可得数列的通项,即可计算,由于是一个复合的形式,所以先计算通项式.所以即等价于证明.所以【考点定位】1.等差数列、等比数列的性质.2.数列的求和.3.数列与不等式的知识交汇.4.归纳递推的思想.26如图1,在直角梯形中,且现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2(1)求证:平面;(2)求证:;(3)求点到平面的距离.【答案】(1)见解析(2)见解析(3)【解析】 试题解析:(1)证明:取中点,连结在中,分别为的中点,所以,且由已知,所以,且 3分所以四边形为平行四边形所以 4分又因为平面,且平面,所以平面 5分(2)在

    10、正方形中,又因为平面平面,且平面平面,所以平面所以 7分在直角梯形中, ,可得在中,所以所以 8分 12分又,设点到平面的距离为则,所以所以点到平面的距离等于. 14分【考点定位】勾股定理线面平行,线面垂直等体积法27如图:已知长方体的底面是边长为的正方形,高,为的中点,与交于点 (1)求证:平面;(2)求证:平面;(3)求三棱锥的体积【答案】(1)证明见解析;(2)证明见解析;(3).【解析】 ,即平面,因此以为底,就是高,体积可得.试题解析:(1)底面是边长为正方形,底面,平面 3分,平面 5分【考点定位】(1)线面垂直;(2)线面平行;(3)几何体的体积.28已知抛物线,直线,是抛物线的

    11、焦点.(1)在抛物线上求一点,使点到直线的距离最小;(2)如图,过点作直线交抛物线于A、B两点.若直线AB的倾斜角为,求弦AB的长度;若直线AO、BO分别交直线于两点,求的最小值.【答案】(1);(2);的最小值是.【解析】 试题分析:(1)数形结合,找出与与平行的切线的切点即为P.(2)易得直线方程,与抛物线联立,利用弦长公式,可求AB;设,可得AO,BO方程,与抛物线联立试题解析:解:(1)设,由题可知:同理由 9分所以 10分设,由,所以此时的最小值是,此时,; 13分综上:的最小值是。 14分【考点定位】抛物线的几何性质,弦长公式,数形结合的数学思想.29已知抛物线(1)若圆心在抛物线

    12、上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;(3)若过点且相互垂直的两条直线,抛物线与交于点与交于点证明:无论如何取直线,都有为一常数【答案】(1);(2);(3)证明见解析【解析】 试题解析:(1) 由定义可得定点(1,0);(4分) (2)设,由,得(5分)由方程组,得【考点定位】(1)抛物线的定义;(2)直线和与抛物线相交与向量的应用;(3)圆锥曲线综合问题30全国第十二届全国人民代表大会第二次会议和政协第十二届全国委员会第二次会议,2022年3月在北京开幕期间为了了解国企员工的工资收入状况,从108名相关人员中用分层抽样方法抽取若干人组成调研小组,有关数据见下表:(单位:人)相关人数抽取人数一般职工63中层27高管182(1)求,;(2)若从中层、高管抽取的人员中选人,求这二人都来自中层的概率【答案】(1) ,. (2).【解析】 - 26 -

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江西省2022年高考数学二轮复习 小题精做系列专题02.docx
    链接地址:https://www.ketangku.com/wenku/file-332618.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1