二十四章圆本章热点专题训练教案(人教版九上数学).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 十四 本章 热点 专题 训练 教案 人教版九上 数学
- 资源描述:
-
1、本章热点专题训练1.掌握本章重要知识.能灵活运用有关定理,公式解决具体问题.2.通过梳理本章知识,回顾解决问题中所涉及的数形结合思想,分类讨论思想的过程,加深对本章知识的理解.3.在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用圆的相关知识定理解决具体问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系.教学时,边回顾边建立结构框图.二、释疑解惑,加深理解1.垂径定理及推论的应用垂径定理:垂直于
2、弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.拓展:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.说明:由垂径定理及其推论,可知对于一个圆和一条直线,如果具备下列五个性质中的两个,那么就具备其余三个性质.这五个性质分别为:经过圆心;垂直于弦;平分弦(不是直径);平分弦所对的劣弧;平分弦所对的优弧.特别注意:此处被平分的弦不能是直径,因为在圆中,任意两条直径总是互相平分的.2.三角形内切圆的半径r,周长l与面积S之间的关系与三角形各边都相切的圆叫做三角形内切圆.内切圆的圆心
3、是三角形三条角平分线的交点,叫做三角形的内心.所以,三角形的内心到三角形三边的距离相等,并且一定在三角形内,三角形有唯一的一个内切圆,而圆有无数个外切三角形.3.两圆相交作公共弦的问题两圆相交作公共弦的问题,往往利用圆的轴对称性构造直角三角形来解题,但要注意两圆圆心分布在同侧还是异侧.三、典例精析,复习新知例1 如图,在O中,P是弦AB的中点,CD是过点P的直径.则下列结论中不正确的是( )分析:P是弦AB的中点,CD是过点P的直径.由垂径定理的推论及“三线合一”的性质即可判断.由题意易判断出D项结论不正确.例2 如图,在垂径定理的运用中,常涉及弦长a,弦心距d,半径r,以及弓形高h这四者之间
4、的关系,它们的关系是_.分析:根据这两个公式,在a、d、h、r四个量中,知道任意两个即可求出其他两个.由题意易求得它们的关系为r2=(a/2)2+d2,r=d+h.例3如图,已知O是ABC的内切圆,切点为D、E、F,如果AE=1,CD=2,BF=3.且ABC的面积为6,则内切圆的半径r=_.分析:直接求内切圆的半径有困难,由于面积已知,因此,可转化为面积法来求,连接AO、BO、CO,则ABC分为三部分,由面积可求出半径.6=(AF+BF)r+(BD+CD)r+(AE+EC)r即:6=4r+5r+3rr=1.引申:在上题中,若ABC的三边长分别为a、b、c,ABC的面积为S,周长为l.则.例4相
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
