江苏省泰兴中学2015-2016学年高一数学竞赛培训讲义:组合数学培训系列1 排列组合常见题型及解题策略 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省泰兴中学2015-2016学年高一数学竞赛培训讲义:组合数学培训系列1 排列组合常见题型及解题策略 江苏省
- 资源描述:
-
1、组合数学培训系列1 排列组合常见题型及解题策略 排列组合中的计数问题是组合数学的基本内容也是竞赛的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合计数题的有效途径.一.可重复的排列求幂法: 重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理
2、、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【例2】 把6名实习生分配到7个车间实习共有多少种不同方法? 【例3】 8名同学争夺3项冠军,获得冠军的可能性有 二相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】五人并排站成一排,如果必须相邻且在的右边,则不同的排法种数有 【例2】 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 三相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个
3、元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答) 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 【例5】某市春节晚会原定10个节目,导演最后决定添加3个与“抗冰救灾”有关的节目,但
4、是赈灾节目不排在第一个也不排在最后一个,并且已经排好的10个节目的相对顺序不变,则该晚会的节目单的编排总数为 种.【例6】.马路上有编号为1,2,3,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 【例7】 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种数有多少种? 【例8】 停车场划出一排12个停车位置,今有8辆车需要停放.要求空车位置连在一起,不同的停车方法有多少种?四元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。【例1】 2010年广州亚运会组委会要从小张、小
5、赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 【例2】 1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 【例3】 有七名学生站成一排,某甲不排在首位也不排在末位的排法有多少种? 五多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。【例1】(1) 6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是 (2)把15人分成前后三排,每排5人,不同的排法种数为 (3)8个不同的元素排成前后两排,每排4个元素,其中某2个元素
6、要排在前排,某1个元素排在后排,有多少种不同排法? 六定序问题缩倍法(等几率法):在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.【例1】.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法? 【例3】将A、B、C、D、E、F这6个字母排成一排,若A、B、C必须按A在前,B居中,C在后的原则(A、B、C允许不相邻),有多少种不同的排法? 七标号排位问题(不配对问题) 把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.【例
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-334204.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
