分享
分享赚钱 收藏 举报 版权申诉 / 9

类型湖北省恩施巴东县第一高级中学高中数学(人教版)教案 选修1-1 3.2立体几何中的向量方法第5课时.doc

  • 上传人:a****
  • 文档编号:337671
  • 上传时间:2025-11-27
  • 格式:DOC
  • 页数:9
  • 大小:606KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    湖北省恩施巴东县第一高级中学高中数学人教版教案 选修1-1 3.2立体几何中的向量方法第5课时 湖北省 恩施 巴东县 第一 高级中学 高中数学 人教版 教案 选修 3.2 立体几何 中的 向量 方法
    资源描述:

    1、3.2.5综合问题【学情分析】:教学对象是高二的学生,学生已经具备空间向量与立方体几何的相关知识,前面已经运用向量解决了一些立体几何问题,本节课是进一步通过坐标与向量来解决立体几何的一些综合问题。由此我们可以继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性。【教学目标】:(1)知识与技能:进一步体会空间向量在解决立体几何问题中的广泛作用,再次熟悉立体几何中的向量方法“三步曲”;继续讨论如何利用已知条件适当建立空间直角坐标系,展示向量方法与坐标方法相结合的优越性;对立体几何中的三种方法(综合法、向量法、坐标法)的联系进行分析与小结(2)过程与方法:在解决问题中

    2、,通过数形结合与问题转化的思想方法,加深对相关内容的理解。(3)情感态度与价值观:体会把立方体几何几何转化为向量问题优势,培养探索精神。【教学重点】:坐标法与向量法结合.【教学难点】:适当地建立空间直角坐标系及添加辅助线【教学过程设计】:教学环节教学活动设计意图一、复习引入教师引导学生结合前面的例题从整体上归纳解题过程,留给学生一定时间,使其通过思考能明确认识“三步曲”各阶段的主要任务,并能简明地叙述出来,为对本节后续内容的整体把握作准备坐标法。立体几何中的向量方法可以归纳为三步:( l )把几何问题转化为向量问题;( 2 )进行向量运算; 3 )由向量运算解释几何问题。有助于加强学生对解题通

    3、法的整体认识二、问题与探究一、问题探究问题1 :阅读课本上的例4 ,请你找出其中的已知条件和求解问题这些求解问题能用向量方法解决吗?学生独立阅读并分析题意,教师引导学生认识到本题具有一定的综合性,需要证明直线与平面平行、垂直和计算二面角,而这些问题都可以利用向量解决问题2 :从例4 的已知条件和求解问题看,你认为应怎样把问题向量化?如果建立坐标系,应怎样建立?教师引导学生关注己知条件中有“三条线段两两垂直且彼此相等”这一条件,使学生由此联想到选择这些线段所在直线为坐标轴、以线段长(正方形边长)为单位长度建立空间直角坐标系,并意识到这是适合本题的坐标化方法教师要求学生写出点P , A , , D

    4、 , E 的坐标并进一步写出 等的坐标问题3 :考虑例4 ( 1 ) ,要证平面,应如何入手?教师从“平面”出发,启发学生考虑直线与平面平行的判定条件,引导学生通过讨论发现PA 与有平行关系,从而自然地想到写出 的坐标,并由k 证出 ,进而证出平面。问题4 :考虑例4 ( 2 ) ,要证平面,应如何人手?教师从“平面出发”,启发学生考虑直线与平而垂直的判定条件,让学生讨论:应证明PB 与哪些线段垂直,用向量方法怎样证?在讨论的基础上,由学生自己写出主要证明过程,即(已知) , ,平面问题5 :考虑例4( 3 ) ,求二面角的大小,应如何人手?教师从“计算二面角C 一PB 一D 的大小”出发,启

    5、发学生如何找出相应的平面角,让学生讨论:哪个角是二面角C 一PB 一D 的平面角,用向量方法怎样计算它的大小?教师引导学生考虑:点F 的坐标对计算是否垂要?怎样利用题中条件确定点F 的坐标?让学生通过讨论写出确定点F 坐标的过程,再进一步考虑并表达通过cos EFD 计算EF 的过程问题6 :考虑例4 后的思考题 学生结合刚讨论过的例题,对思考题进行思考和讨沦,教师适当点拨引导注意不要就题论题,而要透过例题看到解题中的基本想法二、问题解答解:如课本图所示建立空间直角坐标系,点D为坐标原点,设DC=1(1)证明:连结AC,AC交BD于点G,连结EG三、小结立体几何中的不同方法教师引导学生进行归纳

    6、,了解各种方法的特点及联系,认识到应根据问题的条件选择合适的方法,而不是生搬硬套通过阅读题目,使学生明确题中所给出的条件和求解的问题,从需要完成的任务理出本题可以用向最解决的大体思路初步建立已知条件与求解内容两者间的联系,使学生意识到通过把向量坐标化解决问题,培养他们结合题中条件建立适当坐标系的能力找出这条直线的过程可以锻炼直觉观察能力;证明两线平行可以巩固对直线的方向向量、共线向量等概念的理解找出这两条直线的过程可以锻炼分析已知条件以及看图能力;证明直线间的垂直关系的过程可以巩固对两非零向量的 “数量积为0 ”的几何意义的认识。计算二面角的大小,首先要找出其平面角,转而计算平面角的大小计算角

    7、的大小时,向量是非常有力的工具解决这个问题可以巩固对运用向量方法求角度的掌握思考题1 可以使学生进一步体会向量方法中坐标化对简化计算所起的作用思考题2 可以加强不同方法之间的联系加深对不同方法(综合法、向量法、坐标法)的特点和联系的认识三、训练与提高1,练习题3 。(解略) 2,如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的余弦值。解:(I)略(II)以O为原点,如图建立空间直角坐标系,则异面直线AB与CD所成角的余弦值为。学生进行提高训练应用.四、小结解决立体几何问题的三种方法:1, 综合方法;2, 向量方法;3, 坐标方法

    8、。反思归纳五、作业习题3. A 组9、10、 12 题。练习与测试:(基础题)1,过正方形的顶点,引平面,若,则平面和平面所成的二面角的大小是( )A B C D答:B2,设P是的二面角内一点,AB为垂足,则AB的长为 ( )A B C D 答:C3,如下图,已知空间四边形OABC,其对角线为OB、AC,M、N分别是对边OA、BC的中点,点G在线段MN上,且分MN所成的定比为2,现用基向量、表示向量,设=x+y+z,则x、y、z的值分别为A.x=,y=,z=B.x=,y=,z=C.x=,y=,z=D.x=,y=,z=解析:=,=,=(+)=+,=+,=+,=+=+ +.答案:D4.在正方体AB

    9、CDA1B1C1D1中,棱长为a,M、N分别为A1B和AC上的点,A1M=AN=a,则MN与平面BB1C1C的位置关系是A.相交B.平行C.垂直D.不能确定解析:因为正方体的棱长为a,故面对角线A1B=AC=a.而A1M=AN=a,所以M、N分别是A1B和AC上的三等分点.在B1B、BC上各取点E、F,使得B1E=BF=a.则= +.但=()=,= ()=,+= + =+=0,=,即MNEF,MN平面BB1C1C.答案:B(中等题)5,如图,在长方体ABCDA1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1,.求直线EC1与

    10、FD1所成的余弦值.解:以分别为轴建立坐标系,则E(3,3,0)、C1(0,4,2)、 D1(0,0,2)、F(2,4,0).从而(3,1,2)、(2,4,2) 所以直线EC1与FD1所成的余弦值为 6,在直三棱柱中,底面是等腰直角三角形,侧棱,分别是,与的中点,点在平面上的射影是的重心,(1)求与平面所成角的正弦值;(2)求点到平面的距离解:建立如图的空间直角坐标系,设,则,分别是,与的中点, ,是的重心,平面,得,且与平面所成角,(2)是的中点,到平面的距离等于到平面的距离的两倍,平面,到平面的距离等于小结:根据线段和平面的关系,求点到平面的距离可转化为求到平面的距离的两倍(难题)7,如图

    11、,在棱长为1的正方体ABCDA1B1C1D1中,E、F分别是D1D、BD的中点,G在棱CD上,且CG=CD,H为C1G的中点,应用空间向量的运算方法解决下列问题.(1)求证:EFB1C;(2)求EF与C1G所成的角的余弦;(3)求FH的长.分析:本题主要利用空间向量的基础知识,证明异面直线垂直,求异面直线所成的角及线段的长度.解:如图建立空间直角坐标系Oxyz,D为坐标原点O,依据已知有E(0,0,),F(,0),C(0,1,0),C1(0,1,1),B1(1,1,1),G(0,0)(1)证明:=(,0)(0,0,)=(,),=(0,1,0)(1,1,1)=(1,0,1), 由=(1)+0+()(1)=0, 得,EFB1C.(2)解: =(0,0)(0,1,1)=(0,1),|= =, 由(1)得|=, 且=0+()+()(1)=,cos,=.(3)解:H是C1G的中点,H(,),即(0,).又F(,0),FH=|=.8,已知正四棱柱,点为的中点,点为的中点,(1)证明:为异面直线的公垂线;(2)求点到平面的距离解:(1)以分别为轴建立坐标系, 则,为异面直线的公垂线(2)设是平面的法向量,点到平面的距离

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:湖北省恩施巴东县第一高级中学高中数学(人教版)教案 选修1-1 3.2立体几何中的向量方法第5课时.doc
    链接地址:https://www.ketangku.com/wenku/file-337671.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1