湖北省恩施巴东县第一高级中学高中数学(人教版)教案 选修2-3 3.1回归分析的基本思想及其初步应用第2课时.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省恩施巴东县第一高级中学高中数学人教版教案 选修2-3 3.1回归分析的基本思想及其初步应用第2课时 湖北省 恩施 巴东县 第一 高级中学 高中数学 人教版 教案 选修 3.1 回归 分析 基本
- 资源描述:
-
1、高考资源网() 您身边的高考专家3.1 回归分析的基本思想及其初步应用(2)【学情分析】: 教学对象是高二理科学生,学生已掌握建立线性回归模型的知识,并能用所学知识解决一些简单的实际问题。在教学中,要结合实例,让学生了解随机误差产生的原因。初步了解可以通过求回归模型的相关指数或利用残差分析不同的回归模型的拟合精确度。在起点高的班级中通过让学生观察、思考与讨论,进一步体会回归分析中的数理计算,及运用相关指数与残差分析来刻画模型拟合效果,初步形成运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用。【教学目标】:(1)知识与技能:了解求线形回归方程的两个计算公式的推导过程,、回归平方和;
2、了解随机误差产生的原因;了解判断刻画模型拟合效果的方法相关指数和残差分析;了解非线性模型通过变换转化为线性回归模型。(2)过程与方法:本节内容先从大学中女大学生的甚高和体重之间的关系入手,求出相应的回归直线方程,从中也找出存在的不足,从而有进行回归分析的必要性,进而学习相关指数,用相关指数来刻画回归的效果。(3)情感态度与价值观:从实际问题中发现自己已有知识的不足之处,激发学生的好奇心和求知欲,培养学生不满足于已有知识,勇于求知的良好个性品质,引导学生积极进取。【教学重点】: 1. 了解判断刻画模型拟合效果的方法相关指数和残差分析; 2. 通过探究使学生体会有些非线性模型通过变换可以转化为线性
3、回归模型。【教学难点】:1. 了解随机误差产生的原因,用残差平方和衡量回归方程的预报精度;2. 了解判断刻画模型拟合效果的方法相关指数和残差分析。【教学过程设计】:教学环节教学活动设计意图一、创设情境1由例1知,体重的值受身高或随机误差的影响。 2问题一:身高172cm的女大学生的体重一定是60.316kg吗?如果不是,其原因是什么?引入回归分析的效果评价的三个统计量二、探究新知解答问题一:显然,身高172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重接近于60.316kg.上图3.1-2中的样本点和回归直线的相互位置说明了这一点.由于所有的样本点不共线,而只是散布在某一
4、条直线的附近,所以身高和体重的关系可用下面的线性回归模型来表示: y=bx+a+e (3)这里a和b为模型的未知参数,e是y与之间的误差。通常e为随机变量,称为随机误差,它的均值E(e)=0,方差D (e)=.这样线性回归模型的完整表达式为: (4) 在线性回归模型(4)中,随机误差e的方差越小,通过回归直线 (5)预报真实值y的精度越高。随机误差是引起预报值与真实值y之间的误差的原因之一,大小取决于随机误差的方差。另一方面,由于公式(1)和(2)中为截距和斜率的估计值,它们与真实值a和b之间也存在误差,这种误差是引起预报值与真实值y之间误差的另一个原因。思考1、产生随机误差项e的原因是什么?
5、答:实际上,从上例中,一个人的体重值除了受身高的影响外,还受到许多其它因素的影响。例如饮食习惯、是否喜欢运动、度量误差等。另外,我们选用的线性模型往往只是一种近似的模型。所有这些因素都会导致随机误差项e的产生。问题二、在线性回归模型中,e是用预报真实值y的误差,它是一个不可观测的量,那么应该怎样研究随机误差?如何衡量预报的精度?解答问题二:因为随机误差是随机变量,因此可以通过这个随机变量的数字特征来刻画它的一些总体特征。均值是反映随机变量取值平均水平的数字特征,方差是反映随机变量集中于均值程度的数字特征,而随机误差的均值为0,因此可以用方差来衡量随机误差的大小。为了衡量预报的精度,需要估计的值
6、。一个自然的想法是通过样本方差来估计总体方差。如何得到随机变量e的样本呢?由于模型(3)或(4)中的e隐含在预报变量y中,我们无法精确地把它从y中分离出来,因此也就无法得到随机变量e的样本。解决问题的途径是通过样本的估计值来估计。根据截距和斜率的估计公式(1)和(2),可以建立回归方程 因此是(5)中的估计量。由于随机误差,所以是e的估计量,对于样本点 而言,相当于它们的随机误差为 ,i=1,2, ,n,其估计值为 ,i=1,2, ,n,称为相应于点的残差(residual)。类比样本方差估计总体方差的思想,可以用 (n2)作为的估计量,其中由公式(1)(2)给出,称为残差平方和(residu
7、al sum of squares),可以用衡量回归方程的预报精度。通常,越小,预报精度越高。学生动手计算出例1中的残差(如下表)与残差平方和。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359yi54.37354.37347.58158.61862.86354.37345.88358.618ei-6.3732.6272.419-4.6181.1376.627-2.8830.382学习要领:注意、的区别;当残差平方和越小,此时模型的拟合效果越好;对于多个不同的模型,我们还可以引入相关指数来刻画回归的效果,它表示解释变量对预报
8、变量变化的贡献率. 的值越接近于1,说明残差平方和越小,也就是说模型拟合的效果越好,即解释变量和预报变量的线性相关性越强.代入例1中的数据知例1中的,表明“女大学生的身高解释了64的体重变化”,或者说“女大学生的体重差异有64是由身高引起的”。即解释变量对总效应约贡献了64%,而随机误差贡献了剩余的36%,所以身高对体重的效应比随机误差的效应大得多。用身高预报体重时,需要注意下列问题:1 回归方程只适用于我们研究的样本的总体。2 我们所建立的回归方程一般都有时间性。3 样本取值的范围会影响回归方程的适用范围。4 不能期望回归方程得到的预报值就是预报变量的精确值。一般地,建立回归模型的基本步骤为
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-337699.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
