全国各地2022年中考数学试卷分类汇编 综合性问题.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国各地2022年中考数学试卷分类汇编 综合性问题 全国各地 2022 年中 数学试卷 分类 汇编 综合性 问题
- 资源描述:
-
1、综合性问题一选择题1(2022湖北省鄂州市,5,3分)下列命题正确的个数是()若代数式有意义,则x的取值范围为x1且x0我市生态旅游初步形成规模,2022年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03108元若反比例函数(m为常数),当x0时,y随x增大而增大,则一次函数y=2x+m的图象一定不经过第一象限若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个A1B2C3D4考点:命题与定理分析:根据有关的定理和定义作出判断即可得到答案解答:解:若代数式有意义,则x的取值范围为x1且x0,原命题错误
2、;我市生态旅游初步形成规模,2022年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03108元正确若反比例函数(m为常数)的增减性需要根据m的符号讨论,原命题错误;若函数的图象关于y轴对称,则函数称为偶函数,三个函数中只有y=x2中偶函数,原命题错误,故选C点评:本题考查了命题与定理的知识,在判断 一个命题正误的时候可以举出反例21(2022山东临沂,11,3分)如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为
3、顶点作三角形,所作三角形是等腰三角形的概率是( )OxyB1A1A2B2ABCD【答案】:D【解析】有OA1B1,QA2B2,QA1B2,QA2B1,等腰三角形有两个,所以概率是。【方法指导】首先找出一共有几种情况,然后找出符合条件的个数,即可得出事件的概率。3(2022山东临沂,14,3分)如图,正方形ABCD中,AB8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动设运动时间为t(s),OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )ABCDEOFOOOOt/st/st/st/sS
4、/cm2S/cm2S/cm2S/cm284161616168884448888A B C D【答案】:B4(2022山东德州,11,3分)函数y=x2+bx+c与y=x的图象如图所示,有以上结论:b24c0b+c+1=03b+c+6=0当1x3时,x2+(b1)x+c0。其中正确的个数是A、1 B、2 C、3 D、4【答案】B【解析】抛物线与x轴没有交点,b24c0,于是错误;当x=1时,抛物线与直线交点坐标为(1,1)满足函数y=x2+bx+c,即b+c+1=1,错误;(3,3)在函数y=x2+bx+c图象上,3b+c+9=3,即3b+c+6=0,所以正确;观察图象可知,当1xx2+bx+c
5、,即x2+(b1)x+c1, 过点Q作QE直线l , 垂足为E,BPQ为等腰直角三角形,PB=PQ,PEQ=PDB,EPQ=DBP,PEQBDP,QE=PD,PE=BD, 当P的坐标为(m,)时,m-x = , m=0 m=1 2x2-2- = m-1, x= x=1 与x1矛盾,此时点Q不满足题设条件; 当P的坐标为(m,)时,x-m= m=- m=12x2-2- = m-1, x=- x=1 与x1矛盾,此时点Q不满足题设条件; 当P的坐标为(m,2m-2)时,m-x =2m-2 m= m=12x2-2-(2m-2) = m-1, x=- x=1与x1矛盾,此时点Q不满足题设条件;当P的坐
6、标为(m,2-2m)时,x- m = 2m-2 m= m=12x2-2-(2-2m) = m-1 x=- x=1与x1矛盾,此时点Q不满足题设条件;综上所述,不存在满足条件的点Q。11.(2022四川内江,27,12分)如图,在等边ABC中,AB=3,D、E分别是AB、AC上的点,且DEBC,将ADE沿DE翻折,与梯形BCED重叠的部分记作图形L(1)求ABC的面积;(2)设AD=x,图形L的面积为y,求y关于x的函数解析式;(3)已知图形L的顶点均在O上,当图形L的面积最大时,求O的面积考点:相似形综合题分析:(1)作AHBC于H,根据勾股定理就可以求出AH,由三角形的面积公式就可以求出其值
7、;(2)如图1,当0x1.5时,由三角形的面积公式就可以表示出y与x之间的函数关系式,如图2,当1.5x3时,重叠部分的面积为梯形DMNE的面积,由梯形的面积公式就可以求出其关系式;(3)如图4,根据(2)的结论可以求出y的最大值从而求出x的值,作FODE于O,连接MO,ME,求得DME=90,就可以求出O的直径,由圆的面积公式就可以求出其值解答:解:(1)如图3,作AHBC于H,AHB=90ABC是等边三角形,AB=BC=AC=3AHB=90,BH=BC=在RtABC中,由勾股定理,得AH=SABC=;(2)如图1,当0x1.5时,y=SADE作AGDE于G,AGD=90,DAG=30,DG
8、=x,AG=x,y=x2,a=0,开口向上,在对称轴的右侧y随x的增大而增大,x=1.5时,y最大=,如图2,当1.5x3时,作MGDE于G,AD=x,BD=DM=3x,DG=(3x),MF=MN=2x3,MG=(3x),y=,=;(3),如图4,y=;y=(x24x),y=(x2)2+,a=0,开口向下,x=2时,y最大=,y最大时,x=2,DE=2,BD=DM=1作FODE于O,连接MO,MEDO=OE=1,DM=DOMDO=60,MDO是等边三角形,DMO=DOM=60,MO=DO=1MO=OE,MOE=120,OME=30,DME=90,DE是直径,SO=12=点评:本题考查了等边三角
9、形的面积公式的运用,梯形的面积公式的运用,勾股定理的运用,圆周角定理的运用,圆的面积公式的运用,等边三角形的性质的运用,二次函数的性质的运用,解答时灵活运用等边三角形的性质是关键12.(2022四川内江,28,12分)已知二次函数y=ax2+bx+c(a0)的图象与x轴交于A(x1,0)、B(x2,0)(x1x2)两点,与y轴交于点C,x1,x2是方程x2+4x5=0的两根(1)若抛物线的顶点为D,求SABC:SACD的值;(2)若ADC=90,求二次函数的解析式考点:二次函数综合题分析:(1)首先解一元二次方程,求出点A、点B的坐标,得到含有字母a的抛物线的交点式;然后分别用含字母a的代数式
10、表示出ABC与ACD的面积,最后得出结论;(2)在RtACD中,利用勾股定理,列出一元二次方程,求出未知系数a,得出抛物线的解析式解答:解:(1)解方程x2+4x5=0,得x=5或x=1,由于x1x2,则有x1=5,x2=1,A(5,0),B(1,0)抛物线的解析式为:y=a(x+5)(x1)(a0),对称轴为直线x=2,顶点D的坐标为(2,9a),令x=0,得y=5a,C点的坐标为(0,5a)依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,过点D作DEy轴于点E,则DE=2,OE=9a,CE=OEOC=4aSACD=S梯形ADEOSCDESAOC=(DE+OA)OED
11、ECEOAOC=(2+5)9a24a55a=15a,而SABC=ABOC=65a=15a,SABC:SACD=15a:15a=1;(2)如解答图所示,在RtDCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,在RtAOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,设对称轴x=2与x轴交于点F,则AF=3,在RtADF中,由勾股定理得:AD2=AF2+DF2=9+81a2ADC=90,ACD为直角三角形,由勾股定理得:AD2+CD2=AC2,即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=,a0,a=,抛物线的解析式为:y=(x+5)(x1)=x2+x
12、点评:本题考查了二次函数的图象与性质、一元二次方程的解法、直角三角形与勾股定理、几何图形面积的计算等知识点,难度不是很大,但涉及的计算较多,需要仔细认真,避免出错注意第(1)问中求ACD面积的方法13.(2022四川遂宁,24,10分)如图,在O中,直径ABCD,垂足为E,点M在OC上,AM的延长线交O于点G,交过C的直线于F,1=2,连结CB与DG交于点N(1)求证:CF是O的切线;(2)求证:ACMDCN;(3)若点M是CO的中点,O的半径为4,cosBOC=,求BN的长考点:圆的综合题分析:(1)根据切线的判定定理得出1+BCO=90,即可得出答案;(2)利用已知得出3=2,4=D,再利
13、用相似三角形的判定方法得出即可;(3)根据已知得出OE的长,进而利用勾股定理得出EC,AC,BC的长,即可得出CD,利用(2)中相似三角形的性质得出NB的长即可解答:(1)证明:BCO中,BO=CO,B=BCO,在RtBCE中,2+B=90,又1=2,1+BCO=90,即FCO=90,CF是O的切线;(2)证明:AB是O直径,ACB=FCO=90,ACBBCO=FCOBCO,即3=1,3=2,4=D,ACMDCN;(3)解:O的半径为4,即AO=CO=BO=4,在RtCOE中,cosBOC=,OE=COcosBOC=4=1,由此可得:BE=3,AE=5,由勾股定理可得:CE=,AC=2,BC=
14、2,AB是O直径,ABCD,由垂径定理得:CD=2CE=2,ACMDCN,=,点M是CO的中点,CM=AO=4=2,CN=,BN=BCCN=2=点评:此题主要考查了相似三角形的判定与性质以及切线的判定和勾股定理的应用等知识,根据已知得出ACMDCN是解题关键14.(2022四川遂宁,25,12分)如图,抛物线y=x2+bx+c与x轴交于点A(2,0),交y轴于点B(0,)直线y=kx过点A与y轴交于点C,与抛物线的另一个交点是D(1)求抛物线y=x2+bx+c与直线y=kx的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE
15、y轴于点E探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PNAD于点N,设PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值考点:二次函数综合题分析:(1)将A,B两点分别代入y=x2+bx+c进而求出解析式即可;(2)首先假设出P,M点的坐标,进而得出PM的长,将两函数联立得出D点坐标,进而得出CE的长,利用平行四边形的性质得出PM=CE,得出等式方程求出即可;(3)利用勾股定理得出DC的长,进而根据PMNCDE,得出两三角形周长之比,求出l与x的函数关系,再利用配方法求出二次函数最值即
16、可解答:解:(1)y=x2+bx+c经过点A(2,0)和B(0,)由此得 ,解得抛物线的解析式是y=x2x+,直线y=kx经过点A(2,0)2k=0,解得:k=,直线的解析式是 y=x,(2)设P的坐标是(x,x2x+),则M的坐标是(x, x)PM=(x2x+)(x)=x2x+4,解方程 得:,点D在第三象限,则点D的坐标是(8,7),由y=x得点C的坐标是(0,),CE=(7)=6,由于PMy轴,要使四边形PMEC是平行四边形,必有PM=CE,即x2x+=6解这个方程得:x1=2,x2=4,符合8x2,当x=2时,y=(2)2(2)+=3,当x=4时,y=(4)2(4)+=,因此,直线AD
17、上方的抛物线上存在这样的点P,使四边形PMEC是平行四边形,点P的坐标是(2,3)和(4,);(3)在RtCDE中,DE=8,CE=6 由勾股定理得:DC=CDE的周长是24,PMy轴,PMN=DCE,PNM=DEC,PMNCDE,=,即=,化简整理得:l与x的函数关系式是:l=x2x+,l=x2x+=(x+3)2+15,0,l有最大值,当x=3时,l的最大值是15点评:此题主要考查了二次函数的最值求法以及待定系数法求二次函数解析式和函数交点求法以及平行四边形的性质等知识,利用数形结合得出PM=CE进而得出等式是解题关键15(2022贵州省黔西南州,26,16分)如图,已知抛物线经过A(2,0
18、),B(3,3)及原点O,顶点为C(1)求抛物线的函数解析式(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标(3)P是抛物线上第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与BOC相似?若存在,求出点P的坐标;若不存在,请说明理由考点:二次函数综合题专题:综合题分析:(1)由于抛物线经过A(2,0),B(3,3)及原点O,待定系数法即可求出抛物线的解析式;(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;(3)分两种情况讨论,AMPBOC,PMABOC,根据相似三角形对应边的比相等可
19、以求出点P的坐标解答:解:(1)设抛物线的解析式为y=ax2+bx+c(a0),将点A(2,0),B(3,3),O(0,0),代入可得:,解得:故函数解析式为:y=x2+2x(2)当AO为平行四边形的边时,DEAO,DE=AO,由A(2,0)知:DE=AO=2,若D在对称轴直线x=1左侧,则D横坐标为3,代入抛物线解析式得D1(3,3),若D在对称轴直线x=1右侧,则D横坐标为1,代入抛物线解析式得D2(1,3)综上可得点D的坐标为:(3,3)或(1,3)(3)存在如图:B(3,3),C(1,1),根据勾股定理得:BO2=18,CO2=2,BC2=20,BO2+CO2=BC2,BOC是直角三角
20、形,假设存在点P,使以P,M,A为顶点的 三角形与BOC相似,设P(x,y),由题意知x0,y0,且y=x2+2x,若AMPBOC,则=,即x+2=3(x2+2x),得:x1=,x2=2(舍去)当x=时,y=,即P(,),若PMABOC,则=,即:x2+2x=3(x+2),得:x1=3,x2=2(舍去)当x=3时,y=15,即P(3,15)故符合条件的点P有两个,分别是P(,)或(3,15)点评:本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标,注意分类讨论思想的运用,难度较大16(2022贵州省六盘水,25,16
21、分)已知在RtOAB中,OAB=90,BOA=30,OA=,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将RtOAB沿OB折叠后,点A落在第一象限内的点C处(1)求经过点O,C,A三点的抛物线的解析式(2)求抛物线的对称轴与线段OB交点D的坐标(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P的坐标;若不存在,请说明理由考点:二次函数综合题分析:(1)在RtAOB中,根据AO的长和BOA的度数,可求得OB的长,
22、根据折叠的性质即可得到OA=OC,且BOC=BOA=30,过C作CDx轴于D,即可根据COD的度数和OC的长求得CD、OD的值,从而求出点C、A的坐标,将A、C、O的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式(2)求出直线BO的解析式,进而利用x=求出y的值,即可得出D点坐标;(3)根据(1)所得抛物线的解析式可得到其顶点的坐标(即C点),设直线MP与x轴的交点为N,且PN=t,在RtOPN中,根据PON的度数,易得PN、ON的长,即可得到点P的坐标,然后根据点P的横坐标和抛物线的解析式可求得M点的纵坐标,过M作MFCD(即抛物线对称轴)于F,过P作
23、PQCD于Q,若PD=CM,那么CF=QD,根据C、M、P、D四点纵坐标,易求得CF、QD的长,联立两式即可求出此时t的值,从而求得点P的坐标解答:解:(1)过点C作CHx轴,垂足为H;在RtOAB中,OAB=90,BOA=30,OA=,OB=4,AB=2;由折叠的性质知:COB=30,OC=AO=2,COH=60,OH=,CH=3;C点坐标为(,3)O点坐标为:(0,0),抛物线解析式为y=ax2+bx(a0),图象经过C(,3)、A(2,0)两点,解得;此抛物线的函数关系式为:y=x2+2x(2)AO=2,AB=2,B点坐标为:(2,2),设直线BO的解析式为:y=kx,则2=2k,解得:
24、k=,y=x,y=x2+2x的对称轴为直线x=,将两函数联立得出:y=1,抛物线的对称轴与线段OB交点D的坐标为:(,1);(3)存在y=x2+2x的顶点坐标为(,3),即为点C,MPx轴,垂足为N,设PN=t;BOA=30,ON=t,P(t,t);作PQCD,垂足为Q,MFCD,垂足为F;把x=t代入y=x2+2x,得y=3t2+6t,M(t,3t2+6t),F(,3t2+6t),同理:Q(,t),D(,1);要使PD=CM,只需CF=QD,即3(3t2+6t)=t1,解得t=,t=1(舍),P点坐标为(,),存在满足条件的P点,使得PD=CM,此时P点坐标为(,)点评:此题主要考查了图形的
25、旋转变化、解直角三角形、二次函数解析式的确定等重要知识点,表示出P点坐标利用CF=QD求出是解题关键17(2022河南省,23,11分)如图,抛物线与直线交于两点,其中点在轴上,点的坐标为。点是轴右侧的抛物线上一动点,过点作轴于点,交于点. (1)求抛物线的解析式; (2)若点的横坐标为,当为何值时,以为顶点的四边形是平行四边形?请说明理由。 (3)若存在点,使,请直接写出相应的点的坐标【解答】(1)直线经过点, 抛物线经过点, 抛物线的解析式为(2)点的横坐标为且在抛物线上 ,当时,以为顶点的四边形是平行四边形 当时,解得:即当或时,四边形是平行四边形 当时,解得:(舍去)即当时,四边形是平
26、行四边形(3)如图,当点在上方且时,作,则 PMFCNF, 又 解得:,(舍去) 。同理可以求得:另外一点为18(2022黑龙江省哈尔滨市,24) 某水渠的横截面呈抛物线形,水面的宽为AB(单位:米)。现以AB所在直线为x轴以抛物线的对称轴为y轴建立如图所示的平面直角坐标系,设坐标原点为O已知AB=8米。设抛物线解析式为y=ax2-4 (1)求a的值; (2)点C(一1,m)是抛物线上一点,点C关于原点0的对称点为点D,连接CD、BC、BD,求ABCD的面积考点:二次函数综合题。分析:(1)首先得出B点的坐标,进而利用待定系数法求出a继而得二次函数解析式(2)首先得出C点的坐标,再由对称性得D
27、点的坐标,由SBCD= SBOD+ SBOC求出解答:(1)解AB=8 由抛物线的对称性可知0B=4B(4,0) 0=16a-4a= (2)解:过点C作CEAB于E,过点D作DFAB于Fa= 令x=一1m=(一1)24= C(-1,)点C关于原点对称点为D D(1,)CE=DF=SBCD= SBOD+ SBOC = =OBDF+OBCE=4+4 =15BCD的面积为l5平方米19(2022河北省,26,14分)一透明的敞口正方体容器ABCD -ABCD 装有一些 液体,棱AB始终在水平桌面上,容器底部的倾斜角为 (CBE = ,如图17-1所示)探究 如图17-1,液面刚好过棱CD,并与棱BB
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
部编版1年级语文下册3 小青蛙作业课件.ppt
