全国统考2023版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1备考试题文含解析2023032717.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 统考 2023 高考 数学 一轮 复习 10 圆锥曲线 方程 综合 应用 备考 试题 解析 2023032717
- 资源描述:
-
1、第十章圆锥曲线与方程第四讲圆锥曲线的综合问题拓展变式1.2017浙江,21,15分如图10-4-2,已知抛物线x2=y,点A(-12,14),B(32,94),抛物线上的点P(x,y)(-12x1)的左、右顶点,G为E的上顶点,AGGB=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.3.2021武汉四地六校高三联考已知椭圆C:x2a2+y2b2=1(ab0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线7x-5y+12=0相切.(1)求椭圆C的方程.(2)已知A(-4,0),过点R(3,0)作与x轴不重合的
2、直线l交椭圆C于P,Q两点,连接AP,AQ,分别交直线x=163于M,N两点,若直线MR,NR的斜率分别为k1,k2,问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.4.2021湖北省部分重点中学摸底联考已知点A(1,-32)在椭圆C:x2a2+y2b2=1(ab0)上,O为坐标原点,直线l:xa2-3y2b2=1的斜率与直线OA的斜率之积为-14.(1)求椭圆C的方程.(2)不经过点A的直线m:y=32x+t(t0)与椭圆C交于P,Q两点,P关于原点的对称点为R(与点A不重合),直线AQ,AR与y轴分别交于点M,N,求证:|AM|=|AN|.5.2020山西大同一联已知椭圆C的
3、中心在原点,焦点在坐标轴上,直线y=32x与椭圆C在第一象限内的交点是M,点M在x轴上的射影恰好是椭圆C的右焦点F2,椭圆C的另一个焦点是F1,且MF1MF2=94.(1)求椭圆C的方程;(2)若直线l过点(-1,0),且与椭圆C交于P,Q两点,求F2PQ的内切圆的面积的最大值.6.2020湖北省宜昌市三校联考已知F为椭圆C:x2a2+y2b2=1(ab0)的右焦点,点P(2,2)在椭圆C上,且PFx轴.(1)求椭圆C的方程;(2)如图10-4-4,过点F的直线l分别交椭圆C于A,B两点,交直线x=4于点M.判断PA,PM,PB的斜率是否构成等差数列,并说明理由.图10-4-4答 案第十章圆锥
4、曲线与方程第四讲圆锥曲线的综合问题1.(1)设直线AP的斜率为k,则k=x2-14x+12=x-12.因为-12x32,所以直线AP斜率的取值范围是(-1,1).(2)解法一设直线AP的方程为y-14=k(x+12),即kx-y+12k+14=0,因为BQAP且B点坐标为(32,94),所以直线BQ的方程为x+ky-94k-32=0.联立直线AP与BQ的方程,得kx-y+12k+14=0,x+ky-94k-32=0,解得xQ=-k2+4k+32(k2+1).因为|PA|=1+k2(x+12)=1+k2(k+1),|PQ|=1+k2(xQ-x)=-(k-1)(k+1)2k2+1,所以|PA|PQ
5、|=-(k-1)(k+1)3.令f(k)=-(k-1)(k+1)3,k(-1,1),因为f(k)=-(4k-2)(k+1)2,所以f(k)在区间(-1,12)上单调递增,(12,1)上单调递减,因此当k=12时,|PA|PQ|取得最大值2716.解法二连接BP,则|AP|PQ|=|AP|PB|cosBPQ=AP(AB-AP)=APAB-AP2.易知P(x,x2)(-12x32),AP=(x+12,x2-14),AB=(2,2),则APAB=2x+1+2x2-12=2x2+2x+12,AP2=(x+12)2+(x2-14)2=x2+x+14+x4-12x2+116=x4+12x2+x+516.所
6、以|AP|PQ|=-x4+32x2+x+316(-12x32).设f(x)=-x4+32x2+x+316(-12x1,所以a=3.所以E的方程为x29+y2=1.(2)设C(x1,y1),D(x2,y2),P(6,t).若t0,设直线CD的方程为x=my+n,由题意可知-3n0,则y1+y2=-18m3m2+4,y1y2=-213m2+4.设M(163,yM),N(163,yN).由A,P,M三点共线可知yM163+4=y1x1+4,所以yM=283y1x1+4.同理可得yN=283y2x2+4.所以k1k2=yM163-3yN163-3=9yMyN49=16y1y2(x1+4)(x2+4).
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-338616.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
