全国统考2023版高考数学大一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质1备考试题文含解析20230327129.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 统考 2023 高考 数学 一轮 复习 函数 概念 基本 初等 性质 备考 试题 解析 20230327129
- 资源描述:
-
1、第二章函数概念与基本初等函数第二讲函数的基本性质练好题考点自测 1.下列说法中正确的个数是()(1)若函数y=f(x)在1,+)上是增函数,则函数的单调递增区间是1,+).(2)对于函数f(x),xD,若对任意x1,x2D(x1x2),有(x1-x2)f(x1)-f(x2)0,则函数f(x)在区间D上是增函数.(3)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.(4)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.(5)已知函数y=f(x)是定义在R上的偶函数,若f(x)在(-,0)上是减函数,则f(x)在(0,+)上是增函数.(
2、6)若T为函数y=f(x)的一个周期,那么nT(nZ)也是函数f(x)的周期.A.3B.4C.5D.62.2019北京,3,5分文下列函数中,在区间(0,+)上单调递增的是()A.y=x12B.y=2-xC.y=log12xD.y=1x3.2019全国卷,6,5分文设f(x)为奇函数,且当x0时,f(x)=ex-1,则当x0时,f(x)=()A.e-x-1B.e-x+1C.-e-x-1D.-e-x+14.2020山东,8,5分若定义在R的奇函数f(x)在(-,0)上单调递减,且f(2)=0,则满足xf(x-1)0的x的取值范围是()A.-1,13,+)B.-3,-10,1C.-1,01,+)D
3、.-1,01,35.2021大同市调研测试已知函数f(x)=ax3+bsin x+cln(x+x2+1)+3的最大值为5,则f(x)的最小值为()A.-5B.1C.2D.36.2020福州3月质检已知f(x)是定义在R上的偶函数,其图象关于点(1,0)对称.给出以下关于f(x)的结论:f(x)是周期函数;f(x)满足f(x)=f(4-x);f(x)在(0,2)上单调递减;f(x)=cosx2是满足条件的一个函数.其中正确结论的个数是()A.4B.3C.2D.17.2018江苏,9,5分函数f(x)满足f(x+4)=f(x)(xR),且在区间(-2,2上,f(x)=cosx2,0x2,|x+12
4、|,-21是R上的增函数,则a的取值范围为.(2)2016天津,13,5分已知f(x)是定义在R上的偶函数,且在区间(-,0)上单调递增.若实数a满足f(2|a-1|)f(-2),则a的取值范围是.2.(1)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设xR,用x表示不超过x的最大整数,则y=x称为高斯函数.例如:-2.1=-3,3.1=3.已知函数f(x)=2x+31+2x+1,则函数y=f(x)的值域为()A.(12,3)B.(0,2C.0,1,2D.0,1,2,3(2)已知函数f(x)=sinx22x-1+2-x+1(x0),则函数f
5、(x)的最大值是.3.新课标全国,5分设函数f(x),g(x)的定义域都为R,且 f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A. f(x)g(x)是偶函数B. f(x)|g(x)|是奇函数C.|f(x)|g(x)是奇函数D.|f(x)g(x)|是奇函数4.2021陕西模拟若函数f(x),g(x)分别是定义在R上的偶函数、奇函数,且满足f(x)+2g(x)=ex,则()A.f(-2)f(-3)g(-1)B.g(-1)f(-3)f(-2)C.f(-2)g(-1)f(-3)D.g(-1)f(-2)f(-3)5.2021贵阳市摸底测试已知函数f(x)的定义域为R.当x12时,f(x+
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-338671.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
三年级上册语文课件-19.威尔逊出游|西师版 (共10张PPT).ppt
