分享
分享赚钱 收藏 举报 版权申诉 / 5

类型全国通用2022高考数学二轮复习专题一第3讲导数与函数的单调性极值最值问题.docx

  • 上传人:a****
  • 文档编号:339110
  • 上传时间:2025-11-27
  • 格式:DOCX
  • 页数:5
  • 大小:23.73KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    全国 通用 2022 高考 数学 二轮 复习 专题 导数 函数 调性 极值 问题
    资源描述:

    1、第3讲导数与函数的单调性、极值、最值问题一、选择题1.函数f(x)x2ln x的单调递减区间为()A.(1,1 B.(0,1C.1,) D.(0,)解析由题意知,函数的定义域为(0,),又由f (x)x0,解得0x1,所以函数f(x)的单调递减区间为(0,1.答案B2.(2022武汉模拟)已知函数f(x)mx2ln x2x在定义域内是增函数,则实数m的取值范围是()A.1,1 B.1,)C.1,) D.(,1解析f(x)mx20对一切x0恒成立,m.令g(x),则当1,即x1时,函数g(x)取最大值1.故m1.答案C3.(2022临沂模拟)函数f(x)x33axa在(0,1)内有最小值,则a的

    2、取值范围是()A.0,1) B.(1,1)C. D.(0,1)解析f(x)3x23a3(x2a).当a0时,f(x)0,f(x)在(0,1)内单调递增,无最小值.当a0时,f(x)3(x)(x).当x(,)和(,)时,f(x)单调递增;当x(,)时,f(x)单调递减,所以当1,即0a1时,f(x)在(0,1)内有最小值.答案D4.(2022陕西卷)对二次函数f(x)ax2bxc(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.1是f(x)的零点 B.1是f(x)的极值点C.3是f(x)的极值 D.点(2,8)在曲线yf(x)上解析A正确等价于abc

    3、0,B正确等价于b2a,C正确等价于3,D正确等价于4a2bc8.下面分情况验证:若A错,由、组成的方程组的解为符合题意;若B错,由、组成的方程组消元转化为关于a的方程后无实数解;若C错,由、组成方程组,经验证a无整数解;若D错,由、组成的方程组a的解为也不是整数.综上,故选A.答案A5.(2022潍坊模拟)函数f(x)的定义域是R,f(0)2,对任意xR,f(x)f(x)1,则不等式exf(x)ex1的解集为()A.x|x0B.x|x0C.x|x1,或x1D.x|x1,或0x1解析构造函数g(x)exf(x)ex,因为g(x)exf(x)exf(x)exexf(x)f(x)exexex0,所

    4、以g(x)exf(x)ex为R上的增函数.又因为g(0)e0f(0)e01,所以原不等式转化为g(x)g(0),解得x0.答案A二、填空题6.(2022陕西卷)设曲线yex在点(0,1)处的切线与曲线y(x0)上点P处的切线垂直,则P的坐标为_.解析(ex)e01,设P(x0,y0),有|1,又x00,x01,故P的坐标为(1,1).答案(1,1)7.若f(x)x33ax23(a2)x1在R上单调递增,则a的取值范围是_.解析f(x)3x26ax3(a2).由题意知f(x)0在R上恒成立,所以36a2433(a2)0,解得1a2.答案1,28.(2022衡水中学期末)若函数f(x)x24x3l

    5、n x在t,t1上不单调,则t的取值范围是_.解析对f(x)求导,得f(x)x4.由f(x)0得函数f(x)的两个极值点为1,3,则只要这两个极值点有一个在区间(t,t1)内,函数f(x)在区间t,t1上就不单调,所以t1t1或t3t1,解得0t1或2t3.答案(0,1)(2,3)三、解答题9.已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解(1)f(x)ex(axab)2x4.由已知,得f(0)4,f(0)4,故b4,ab8.从而a4,b4.(2)由(1)知,f(x)4ex

    6、(x1)x24x,f(x)4ex(x2)2x44(x2).令f(x)0得,xln 2或x2.从而当x(,2)(ln 2,)时,f(x)0;当x(2,ln 2)时,f(x)0.故f(x)在(,2,ln 2,)上单调递增,在2,ln 2上单调递减.当x2时,函数f(x)取得极大值,极大值为f(2)4(1e2).10.(2022长沙模拟)已知函数f(x)x3ax23x.(1)若f(x)在1,)上是增函数,求实数a的取值范围;(2)已知函数g(x)ln(1x)xx2(k0),讨论函数g(x)的单调性.解(1)对f(x)求导,得f(x)3x22ax3.由f(x)0在1,)上恒成立,得a.记t(x),当x

    7、1时,t(x)是增函数,所以t(x)min(11)0.所以a0.(2)g(x),x(1,).当k0时,g(x),所以在区间(1,0)上,g(x)0;在区间(0,)上,g(x)0.故g(x)的单调递增区间是(1,0,单调递减区间是0,).当0k1时,由g(x)0,得x10,x20,所以在区间(1,0)和上,g(x)0;在区间上,g(x)0.故g(x)的单调递增区间是(1,0和,单调递减区间是.当k1时,g(x)0,故g(x)的单调递增区间是(1,).当k1时,g(x)0,得x1(1,0),x20,所以在区间和(0,)上,g(x)0,在区间上,g(x)0.故g(x)的单调递增区间是和0,),单调递

    8、减区间是.11.(2022山东卷)设函数f(x)k(k为常数,e2.718 28是自然对数的底数).(1)当k0时,求函数f(x)的单调区间;(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.解(1)函数yf(x)的定义域为(0,).f(x)k.由k0可得exkx0,所以当x(0,2)时,f(x)0,函数yf(x)单调递减,x(2,)时,f(x)0,函数yf(x)单调递增.所以f(x)的单调递减区间为(0,2,单调递增区间为2,).(2)由(1)知,k0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k0时,设函数g(x)exkx,x0,).因为g(x)exkexeln k,当0k1时,当x(0,2)时,g(x)exk0,yg(x)单调递增.故f(x)在(0,2)内不存在两个极值点;当k1时,得x(0,ln k)时,g(x)0,函数yg(x)单调递减.x(ln k,)时,g(x)0,函数yg(x)单调递增.所以函数yg(x)的最小值为g(ln k)k(1ln k).函数f(x)在(0,2)内存在两个极值点当且仅当解得ek,综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为.5

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:全国通用2022高考数学二轮复习专题一第3讲导数与函数的单调性极值最值问题.docx
    链接地址:https://www.ketangku.com/wenku/file-339110.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1