全国通用2022高考数学二轮复习第一部分微专题强化练专题7解三角形含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2022 高考 数学 二轮 复习 第一 部分 专题 强化 三角形 解析
- 资源描述:
-
1、【走向高考】(全国通用)2022高考数学二轮复习 第一部分 微专题强化练 专题7 解三角形一、选择题1(文)(2022唐山市一模)在直角梯形ABCD中,ABCD,ABC90,AB2BC2CD,则cosDAC()A.B.C. D.答案B解析由已知条件可得图形,如图所示,设CDa,在ACD中,CD2AD2AC22ADACcosDAC,a2(a)2(a)22aacosDAC,cosDAC.方法点拨解三角形的常见类型:(1)已知两角和一边,如已知A,B和c,由ABC求C,由正弦定理求a,b.(2)已知两边和这两边的夹角,如已知a、b和C,应先用余弦定理求c,再应用正弦定理先求较短边所对的角,然后利用A
2、BC求另一角(3)已知两边和其中一边的对角,如已知a、b和A,应先用正弦定理求B,由ABC求C,再由正弦定理或余弦定理求c,要注意解的讨论(4)已知三边a、b、c,可应用余弦定理求A、B、C.(理)(2022河南六市联考)在锐角ABC中,角A、B、C所对的边分别为a、b、c,若sinA,a2,SABC,则b的值为()A.B.C2D2答案A解析由已知得:cosA,SABCbcsinAbc,bc3,又由余弦定理得:a2b2c22bccosA,即b2c224,b2c26,bc2,解得bc,选A.2(2022南昌市一模)在ABC中,角A,B,C所对的边分别是a,b,c,c1,B45,cosA,则b等于
3、()A. B.C. D.答案C解析因为cosA,所以sinA,所以sinCsin(AB)sin(AB)sinAcosBcosAsinBcos45sin45.由正弦定理,得bsin45.3(文)若三角形ABC中,sin(AB)sin(AB)sin2C,则此三角形的形状是()A等腰三角形B直角三角形C等边三角形D等腰直角三角形答案B解析sin(AB)sin(AB)sin2C,sin(AB)sinC0,sin(AB)sin(AB),cosAsinB0,sinB0,cosA0,A为直角(理)(2022合肥第一次质检)在ABC中,已知2acosBc,sinAsinB(2cosC)sin2,则ABC为()
4、A等边三角形B等腰直角三角形C锐角非等边三角形D钝角三角形答案B解析依题意得2sinAcosBsinCsin(AB),2sinAcosBsin(AB)sin(AB)0,因此BA,C2A,于是有sin2A(2cos2A)cos2A,即sin2A(32sin2A)1sin2A,解得sin2A,因此sinA,又BA必为锐角,因此BA,ABC是等腰直角三角形,故选B.易错分析本题易犯的主要错误是不能对所给恒等式进行有效化简、变形,由于公式应用错误或者化简过程的盲目性导致化简过程无效,这是很多考生在此类问题中常犯的错误事实上,含有边和角的恒等式,一般方法是实施边和角的统一,如果边化角后无法运算,则可以尝
5、试角化边反之,如果角化边较繁,则可以尝试边化角,平时训练时就要注意归纳小结方法点拨判断三角形形状时,一般先利用所给条件将条件式变形,结合正余弦定理找出边之间的关系或角之间的关系由于特殊的三角形主要从正三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形方面命题,故分析条件时,应着重从上述三角形满足的条件与已知条件的沟通上着手4(文)在ABC中,角A、B、C的对边分别为a、b、c,若(a2c2b2)tanBac,则角B的值为()A. B.C.或 D.或答案D解析由(a2c2b2)tanBac得,tanB,再由余弦定理cosB得,2cosBtanB,即sinB,角B的值为或,故应选D.(理)在A
6、BC中,已知bcosCccosB3acosB,其中a、b、c分别为角A、B、C的对边,则cosB的值为()A.BC.D答案A解析由正弦定理得sinBcosCsinCcosB3sinAcosB,sin(BC)3sinAcosB,sinA3sinAcosB,sinA0,cosB.方法点拨给出边角关系的一个恒等式时,一般从恒等式入手化边为角或化角为边,再结合三角公式进行恒等变形,注意不要轻易对等式两边约去同一个因式5(文)(2022辽宁葫芦岛市一模)在ABC中,内角A,B,C所对的边分别是a,b,c.若c2(ab)26,C,则ABC的面积是()A3 B.C.D3答案C解析由余弦定理得:c2a2b22
7、abcosCa2b2ab(ab)26,ab6,SABCabsinC6.(理)在ABC中,ABC,AB,BC3,则sinBAC()A. B.C. D.答案C解析本题考查了余弦定理、正弦定理由余弦定理得AC2AB2BC22ABBCcos29235,AC,由正弦定理,sinA.6在锐角ABC中,设xsinAsinB,ycosAcosB,则x、y的大小关系为()AxyBxyDxy答案C解析yxcosAcosBsinAsinBcos(AB)cos(C)cosC,ABC为锐角三角形,cosC0,yx0,yx.7(2022昆明市质检)设ABC的内角A,B,C所对的边分别是a,b,c,若AB边上的高为,且a2
8、b22ab,则C()A. B.C. D.答案B解析由已知得:SABCabsinCc,sinC,又由余弦定理得:cosCsinC,即sinCcosC,sin,sin1,C,C.8(文)(2022郑州市质检)在ABC中,角A,B,C所对的边分别是a,b,c,已知sin(BA)sin(BA)3sin2A,且c,C,则ABC的面积是()A. B.C. D.或答案D解析由已知得:2sinBcosA3sin2A6sinAcosA,若cosA0,则A,则B,b,SABCbc;若A,则sinB3sinA,由正弦定理得:b3a,又由余弦定理得:c2a2b22abcosC,即7a29a23a27a2,a1,b3,
9、SABCabsinC13,选D.(理)(2022衡水中学三调)已知ABC的内角A、B、C对的边分别为a、b、c,sinAsinB2sinC,b3,当内角C最大时,ABC的面积等于()A. B.C. D.答案A解析根据正弦定理及sinAsinB2sinC得ab2c,c,cosC2,当且仅当,即a时,等号成立,此时sinC,SABCabsinC3.二、填空题9已知ABC的一个内角为120,并且三边长构成公差为4的等差数列,则ABC的面积为_答案15解析设三角形的三边长分别为a4,a,a4,最大角为,由余弦定理得(a4)2a2(a4)22a(a4)cos120,则a10,所以三边长为6,10,14.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
