《全程复习方略》2016届高考数学(全国通用):专项强化训练(二).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全程复习方略
- 资源描述:
-
1、高考资源网() 您身边的高考专家温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。专项强化训练(二)三角函数与平面向量的综合应用一、选择题1.(2015济宁模拟)已知向量a=(1,),b=(cos,sin),若ab,则tan=()A.B.C.-D.-【解析】选B.因为ab,所以sin-cos=0,即sin=cos.故tan=.2.在ABC中,角A,B,C的对边分别为a,b,c,m=(bcosC,-1),n=(c-3a)cosB,1),且mn,则cosB的值为()A.B.-C.D.-【解题提示】利用已知转化为边角关系后利用
2、余弦定理角化边后可解.【解析】选A.由mn,得bcosC+(c-3a)cosB=0.所以=.则c(a2+b2-c2)=3a(a2+c2-b2)-c(a2+c2-b2).所以2a2c=3a(a2+c2-b2),则=.于是cosB=.3.(2015临沂模拟)若向量a=(cos,sin),b=(cos,sin),则a与b一定满足()A.a与b的夹角等于-B.abC.abD.(a+b)(a-b)【解题提示】欲求a与b满足的关系,先利用平面向量数量积公式,判断a与b是否有垂直或者平行的关系,再结合选项判断.【解析】选D.因为ab=(cos,sin)(cos,sin)=cos(-),这表明这两个向量的夹角
3、的余弦值为cos(-).同时,也不能得出a与b的平行和垂直关系.因为计算得到(a+b)(a-b)=0,所以(a+b)(a-b).故选D.4.已知a=,b=(cos,sin),(0,),则|a-b|的取值范围是()A.(0,1)B.(0,1C.(0,)D.(0,【解析】选C.因为a-b=,所以|a-b|=,因为(0,),所以,cos(0,1).故|a-b|(0,).5.(2015郑州模拟)在ABC中,角A,B,C的对边分别为a,b,c,cosC=,=-2且a+b=5,则c等于()A.B.C.4D.【解题提示】由已知cosC=,=-2,利用数量积公式得到ab=8,再利用余弦定理可得,c2=a2+b
4、2-2abcosC可求c.【解析】选A.由已知cosC=,=-2,得bacos(-C)=-2bacosC=2,所以ab=8,利用余弦定理可得,c2=a2+b2-2abcosC=(a+b)2-2ab-2abcosC=52-28-4=5.所以c=.故选A.二、填空题6.在ABC中,内角A,B,C所对边分别为a,b,c,已知m=(1,2),n=(ccosA,b),p=(c,-bcosA),若mn,mp,则ABC的形状是.【解题提示】利用向量关系转化为边角关系后,再边化角可解.【解析】由mn可得,b=2ccosA.由正弦定理可得sinB=2sinCcosA,即sin(A+C)=2sinCcosA.从而
5、sinAcosC+cosAsinC=2sinCcosA,故sinAcosC-cosAsinC=0.即sin(A-C)=0,又-A-C,所以A-C=0,即A=C.由mp可得c-2bcosA=0,从而sinC-2sinBcosA=0,故sin(A+B)-2sinBcosA=0.即sinAcosB-cosAsinB=0,即sin(A-B)=0,故A-B=0,A=B.所以A=B=C.故三角形为等边三角形.答案:等边三角形7.(2015银川模拟)已知正三角形OAB中,点O为原点,点B的坐标是(-3,4),点A在第一象限,向量m=(-1,0),记向量m与向量的夹角为,则sin的值为.【解析】设向量与x轴正
6、向的夹角为,则+=+=,且有sin=,cos=-,sin=sin(-)=sin=sin-cos=-=.答案:8.在ABC中,角A,B,C的对边分别为a,b,c,且2cos2cosB-sin(A-B)sinB+cos(A+C)=-,若a=4,b=5,则在方向上的投影为.【解题提示】利用已知条件先转化求得cosA,再利用正余弦定理可解.【解析】由2cos2cosB-sin(A-B)sinB+cos(A+C)=-,得cosB-sin(A-B)sinB-cosB=-,即cos(A-B)cosB-sin(A-B)sinB=-.则cos(A-B+B)=-,即cosA=-.由0Ab,则AB,故B=,根据余弦
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
英语必修Ⅳ外研版MODULE4课件(共25张)阅读.ppt
