《创新方案 一轮回扣》2015高考(北师大版)数学(理)复习配套试题:平面向量的概念及其线性运算(知识回扣 热点突破 能力提升).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新方案 一轮回扣
- 资源描述:
-
1、高考资源网() 您身边的高考专家第一节平面向量的概念及其线性运算【考纲下载】1了解向量的实际背景2理解平面向量的概念,理解两个向量相等的含义3理解向量的几何表示4掌握向量加法、减法的运算,并理解其几何意义5掌握向量数乘的运算及其几何意义,理解两个向量共线的含义6了解向量线性运算的性质及其几何意义1向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模(2)零向量:长度为0的向量,其方向是任意的(3)单位向量:长度等于1个单位的向量(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线(5)相等向量:长度相等且方向相同的向量(6)相反向量:长度相等
2、且方向相反的向量2向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:abba;结合律:(ab)ca(bc)减法求a与b的相反向量b的和的运算aba(b)数乘求实数与向量a的积的运算|a|a|,当0时,a与a的方向相同;当0时,a与a的方向相反;当0时,a0( a)( )a;()aaa;(ab)ab3.向量共线的判定定理和性质定理(1)向量共线的判定定理:a是一个非零向量,若存在一个实数,使得ba,则向量b与非零向量a共线, 即ba(a0)ab.(2)向量共线的性质定理:若b与非零向量a共线,则存在一个实数,使得ba,即ab(a0)ba.1两向量共线与平行是两个不同
3、的概念吗?两向量共线是指两向量的方向一致吗?提示:方向相同或相反的一组非零向量,叫做平行向量,又叫共线向量显然两向量平行或共线,其方向可能相同,也可能相反2两向量平行与两直线(或线段)平行有何不同?提示:平行向量也叫共线向量,这里的“平行”与两直线(或线段)平行的意义不同,两向量平行时,两向量可以在同一条直线上30与a0时,a的值是否相等?提示:相等,且均为0.4当两个非零向量a,b共线时,一定有ba,反之成立吗?提示:成立1若向量a与b不相等,则a与b一定()A有不相等的模B不共线C不可能都是零向量 D不可能都是单位向量解析:选C若a与b都是零向量,则ab,故选项C正确2若mn,nk,则向量
4、m与向量k()A共线 B不共线C共线且同向 D不一定共线解析:选D可举特例,当n0时,满足mn,nk,故A、B、C选项都不正确,故D正确3D是ABC的边AB上的中点,则向量等于()A BC D解析:选A如图,由于D是AB的中点,所以4(教材习题改编)化简的结果为_解析:()().答案: 5已知a与b是两个不共线向量,且向量ab与(b3a)共线,则的值为_解析:ab与(b3a)共线,存在实数,使ab(3ab),即答案:考点一向量的概念 例1给出下列四个命题:若|a|b|,则ab或ab;若,则四边形ABCD为平行四边形;若a与b同向,且|a|b|,则ab;,为实数,若ab,则a与b共线其中假命题的
5、个数为()A1 B2 C3 D4自主解答不正确|a|b|但a,b的方向不确定,故a,b不一定相等;不正确因为,A,B,C,D可能在同一直线上,所以ABCD不一定是四边形;不正确两向量不能比较大小;不正确当0时,a与b可以为任意向量,满足ab,但a与b不一定共线答案D【方法规律】解决向量的概念问题应关注五点(1)正确理解向量的相关概念及其含义是解题的关键(2)相等向量具有传递性,非零向量的平行也具有传递性(3)共线向量即平行向量,它们均与起点无关(4)向量可以平移,平移后的向量与原向量是相等向量解题时,不要把它与函数图象移动混为一谈(5)非零向量a与的关系:是a方向上的单位向量.下列说法中错误的
6、是()A有向线段可以表示向量但不是向量,且向量也不是有向线段B若向量a和b不共线,则a和b都是非零向量C长度相等但方向相反的两个向量不一定共线D方向相反的两个非零向量必不相等解析:选C选项A中向量与有向线段是两个完全不同的概念,故正确;选项B中零向量与任意向量共线,故a,b都是非零向量,故正确;选项C中是共线向量,故错误;选项D中既然方向相反就一定不相等,故正确高频考点考点二 平面向量的线性运算1平面向量的线性运算是每年高考的重点,题型多为选择题和填空题,难度较小,属中低档题2高考对平面向量的线性运算的考查主要有以下几个命题角度:(1)考查向量加法或减法的几何意义;(2)求已知向量的和;(3)
7、与三角形联系,求参数的值;(4)与平行四边形联系,研究向量的关系例2(1)(2012辽宁高考)已知两个非零向量a,b满足|ab|ab|,则下面结论正确的是()Aab BabC|a|b| Dabab(2)(2011四川高考)如图,正六边形ABCDEF中,()A0 B C D 第(2)题图第(3)题图(3)(2013四川高考)如图在平行四边形ABCD中,对角线AC与BD交于点O,则 _. (4)(2013江苏高考)设D,E分别是ABC的边AB,BC上的点,ADAB,BEBC.若1 2 (1,2为实数),则12的值为_自主解答(1)法一:(代数法)将原式平方得|ab|2|ab|2,a22abb2a2
8、2abb2,ab0,ab.法二:(几何法)如图所示:在ABCD中,设a,b,ab,ab,|ab|ab|,平行四边形两条对角线长度相等,即平行四边形ABCD为矩形,ab.(2)因六边形ABCDEF是正六边形,故.(3)由平行四边形法则,有,已知,所以2.(4) (),12,1,2,故12. 答案(1)B(2)D(3)2(4)平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义向量加法和减法均适合平行四边形法则(2)求已知向量的和一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则(3)与三角形联系,求参数的值求出向量的和或与已知条件中的和式比较
9、,然后求参数(4)与平行四边形联系,研究向量的关系画出图形,找出图中的相等向量、共线向量,将所求向量转化到同一个平行四边形或三角形中求解1在平行四边形ABCD中,AC与BD相交于点O,E是线段OD的中点,AE的延长线与CD交于点F,若a,b,则等于()A.ab B.ab C.ab D.ab解析:选B如图,由题意知,DEBE13DFAB,故,则abab.2若O是ABC所在平面内一点,D为BC边中点,且2 0,那么()A B2C3 D2解析:选A因为D是BC边的中点,所以有2,所以2222()00.3(2014萍乡模拟)在ABC中,点D在线段BC的延长线上,且3,点O在线段CD上(与点C,D不重合
10、),若x(1x) ,则x的取值范围是()A. B.C. D.解析:选D设y,yy()y(1y) ,3,点O在线段CD上(与点C,D不重合),y,x(1x),x.考点三共线向量定理的应用 例3设两个非零向量e1和e2不共线(1)如果e1e2,3e12e2,8e12e2,求证:A,C,D三点共线;(2)如果e1e2,2e13e2,3e1ke2,且A,C,F三点共线,求k的值自主解答(1)证明:e1e2,3e12e2,4e1e2,又8e12e2,2,与共线又与有公共点C,A,C,D三点共线(2)e1e2,2e13e2,3e12e2.A,C,F三点共线,从而存在实数,使得.3e12e23e1ke2,又
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-480048.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
