高中数学新人教A版必修三课件用样本的数字特征估计估计总体的数字特征.ppt
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 新人 必修 课件 样本 数字 特征 估计 总体
- 资源描述:
-
1、学习目标:(一)知识与技能要求能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征,并作出合理的解释(二)过程与方法要求在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的基本数字特征估计总体的基本数字特征(三)情感态度与价值观要求体会统计对决策的作用,提高学习统计知识的兴趣重点与难点:重点:1、实例理解样本标准差的意义和作用2、学会计算数据的标准差;难点:1、理解样本标准差的意义和作用 2、形成对数据处理过程进行初步评价的意识 众数、中位数、平均数数字特征之一:一、众数、中位数、平均数的概念中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个
2、数据的平均数)叫做这组数据的中位数众数:在一组数据中,出现次数最多的数据叫做这组数据的众数众数、中位数、平均数都是描述一组数据的集中趋势的特征数,只是描述的角度不同,其中以平均数的应用最为广泛.平均数:一组数据的算术平均数,即x=例1:在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:成绩(单位:米)150160165170175180185190人数23234111分别求这些运动员成绩的众数,中位数与平均数解:在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75 上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9个数据1.70是最中间的
3、一个数据,即这组数据的中位数是1.70;这组数据的平均数是答:17名运动员成绩的众数、中位数、平均数依次是1.75(米)、1.70(米)、1.69(米).频率组距0.10.20.30.40.5O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)例如,在上一节调查的100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t.如图所示:二、众数、中位数、平均数与频率分布直方图的关系1、众数在样本数据的频率分布直方图中,一般认为是最高矩形的中点的横坐标。2、在样本中,有50的个体小于或等于中位数,也有50的个体大于或等于中位数,因
4、此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值应该在哪一个矩形框内及这个矩形框内的大约位置。下图中虚线代表居民月均用水量的中位数的估计值,此数据值为2.03t.频率组距0.10.20.30.40.5O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)说明:2.03这是中位数的估计值,与样本的中位数值2.0不一样,这是因为样本数据的频率分布直方图,只是直观地表明分布的形状,但是从直方图本身得不出原始的数据内容,所以由频率分布直方图得到的中位数估计值往往与样本的实际中位数值不一致.3、平均数是频率分布直方图的“重心”.是直方图的平衡
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
江苏省扬州市2016年高考语文一轮复习课件 名句默写 .ppt
