《创新设计》2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.5.3 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2016-2017学年高中数学新人教版选修2-2课时作业:第一章 导数及其应用1.5.3 创新 设
- 资源描述:
-
1、1.5.3定积分的概念明目标、知重点1了解定积分的概念,会用定义求定积分2理解定积分的几何意义3掌握定积分的基本性质 定积分概念一般地,如果函数f(x)在区间a,b上连续,用分点ax0x1x2xi1xixnb将区间a,b等分成n个小区间,在每个小区间xi1,xi上任取一点i(i1,2,n),作和式f(i)x f(i),当n时,上述和式无限接近某个常数,这个常数叫做函数f(x)在区间a,b上的定积分,记作f(x)dx,这里,a与b分别叫做积分下限与积分上限,区间a,b叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式几何意义如果在区间a,b上函数f(x)连续且恒有f(
2、x)0,那么定积分f(x)dx表示由直线xa,xb(ab),y0和曲线yf(x)所围成的曲边梯形的面积.基本性质kf(x)dxkf(x)dx(k为常数);f1(x)f2(x)dxf1(x)dxf2(x)dx;f(x)dxf(x)dxf(x)dx(其中acb).探究点一定积分的概念思考1分析求曲边梯形的面积和变速直线运动的路程,找一下它们的共同点答两个问题均可以通过“分割、近似代替、求和、取极限”解决,都可以归结为一个特定形式和的极限思考2怎样正确认识定积分f(x)dx?答(1)定积分f(x)dx是一个数值(极限值)它的值仅取决于被积函数与积分上、下限,另外f(x)dx与积分区间a,b息息相关,
3、不同的积分区间,所得值也不同(2)定积分就是和的极限(i)x,而f(x)dx只是这种极限的一种记号,读作“函数f(x)从a到b的定积分”(3)函数f(x)在区间a,b上连续这一条件是不能忽视的,它保证了和的极限(定积分)的存在(实际上,函数连续是定积分存在的充分条件,而不是必要条件)例1利用定积分的定义,计算x3dx的值解令f(x)x3.(1)分割在区间0,1上等间隔地插入n1个分点,把区间0,1等分成n个小区间,(i1,2,n),每个小区间的长度为x.(2)近似代替、求和取i(i1,2,n),则x3dxSnf()x ()3i3n2(n1)2(1)2.(3)取极限x3dxSn (1)2.反思与
4、感悟(1)利用定积分定义求定积分的数值仍然是“分割、近似代替、求和、取极值”这一过程,需要注意的是在本题中将近似代替、求和一起作为步骤(2),从而省略了解题步骤(2)从过程来看,当f(x)0时,定积分就是区间对应曲边梯形的面积跟踪训练1用定义计算(1x)dx.解(1)分割:将区间1,2等分成n个小区间(i1,2,n),每个小区间的长度为x.(2)近似代替、求和:在上取点i1(i1,2,n),于是f(i)112,从而得f(i)x(2)n012(n1)22.(3)取极限:S 2.因此(1x)dx.探究点二定积分的几何意义思考1从几何上看,如果在区间a,b上函数f(x)连续且恒有f(x)0,那么f(
5、x)dx表示什么?答当函数f(x)0时,定积分f(x)dx在几何上表示由直线xa,xb(a0,f(i)0,故f(i)0.从而定积分f(x)dx0,这时它等于如图所示曲边梯形面积的相反值,即f(x)dxS.当f(x)在区间a,b上有正有负时,定积分f(x)dx表示介于x轴、函数f(x)的图象及直线xa,xb(ab)之间各部分面积的代数和(在x轴上方的取正,在x轴下方的取负)(如图),即f(x)dxS1S2S3.例2利用几何意义计算下列定积分:(1)dx;(2)(3x1)dx.解(1)在平面上y表示的几何图形为以原点为圆心以3为半径的上半圆,其面积为S32.由定积分的几何意义知dx.(2)由直线x
6、1,x3,y0,以及y3x1所围成的图形,如图所示:(3x1)dx表示由直线x1,x3,y0以及y3x1所围成的图形在x轴上方的面积减去在x轴下方的面积,(3x1)dx(3)(331)(1)216.反思与感悟利用几何意义求定积分,关键是准确确定被积函数的图象,以及积分区间,正确利用相关的几何知识求面积不规则的图象常用分割法求面积,注意分割点的准确确定跟踪训练2根据定积分的几何意义求下列定积分的值:(1)xdx;(2)cos xdx;(3)|x|dx.解(1)如图(1),xdxA1A10.(2)如图(2),cos xdxA1A2A30.(3)如图(3),A1A2,|x|dx2A121.(A1,A
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-488541.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
