2021届高考高三数学三轮复习模拟考试卷(十六).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 高考 数学 三轮 复习 模拟 考试卷 十六
- 资源描述:
-
1、高三模拟考试卷(十六)一、 选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)已知全集,集合,则A,B,C,D,2(5分)已知复数,其中是虚数单位,则复数等于ABCD3(5分)“”是“”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4(5分)乘风破浪的姐姐是一档深受观众喜爱的电视节目节目采用组团比赛的方式进行,参赛选手需要全部参加完五场公开比赛,其中五场中有四场获胜,就能取得参加决赛的资格若某参赛选手每场比赛获胜的概率是,则这名选手能参加决赛的概率是ABCD5(5分)已知圆上存在两点,关于直线对称,则的最小值是A1B8
2、C2D46(5分)圭表(圭是南北方向水平放置测定表影长度的刻板,表是与圭垂直的杆)是中国古代用来确定节令的仪器,利用正午时太阳照在表上,表在圭上的影长来确定节令已知冬至和夏至正午时,太阳光线与地面所成角分别为,表影长之差为,那么表高为ABCD7(5分)已知椭圆的左、右焦点为,过右焦点作垂直于轴的直线交椭圆于,两点,若,则椭圆的离心率为ABCD8(5分)已知三棱柱,两两互相垂直,且,分别是,边的中点,是线段上任意一点,过三点,的平面与三棱柱的截面有以下几种可能:三角形;四边形;五边形;六边形其中所有可能的编号是ABCD二、 选择题:本题共4小题,每小题5分,共20分。在每小题给出的四个选项中。有
3、多项符合题目要求。全部选对的得5分,部分选对的对2分,有选错的得0分。9(5分)是评估空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标如图为某地区2021年2月1日到2月12日的日均值(单位:的统计图,则下列叙述正确的是A该地区这12天中空气质量超标的日期为2月6日B该地区这12天日均值的中位数为C该地区这12天日均值的平均数为D该地区从2月6日到2月11日的日均值持续减少10(5分)下列说法正确的是A命题,的否定,B二项式的展开式的各项的系数和为32C已知直线平面,则“”是”的必要不充分条件D函数的图象关于直
4、线对称11设,则下列结论正确的是A不等式 恒成立B函数 的是小值为 2C函数 的最大值为D若,则 的最小值为12(5分)已知函数,则下列结论正确的是A是周期为的奇函数B在上为增函数C在内有20个极值点D若在,上恒成立,则三、 填空题:本题共4小题,每小题5分,共20分。13(5分)设为等比数列的前项和,且,则的值是14(5分)已知,则15(5分)已知直线与双曲线相交于不同的两点,为双曲线的左焦点,且满足,为坐标原点),则双曲线的离心率为16(5分)已知某空心圆锥的母线长为,高为,记该圆锥内半径最大的球为球,则球与圆锥侧面的交线的长为四、 解答题:本题共6小题,共70分。解答应写出文字说明、证明
5、过程或演算步骤。17(10分)在中,角,的对边分别为,且(1)求;(2)若,延长至,使,求的长18(12分)已知数列的首项,前项和为,且数列是以1为公差的等差数列(1)求数列的前项和;(2)设等比数列的首项为2,公比为,其前项和为,若存在正整数,使得是与的等比中项,求的值19(12分)在一次大范围的随机知识问卷调查中,通过随机抽样,得到参加问卷调查的100人的得分统计结果如表所示:得分,频数213212524114(1)由频数分布表可以大致认为,此次问卷调查的得分,近似为这100人得分的平均值(同一组中的数据用该组区间的左端点值作代表)求的值;若,求的值;(2)在(1)的条件下,为此次参加问卷
6、调查的市民制定如下奖励方案:得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)2050概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望20(12分)如图,已知斜三棱柱底面是边长2的正三角形,为所在平面上一点且四边形是菱形,四边形为正方形,平面平面()证明:平面;()求平面与平面所成二面角的正弦值21(12分)已知在平面直角坐标系中,动点到定点的距离与到定直线的距离的比等于常数2()求动点的轨迹的方程;()若直线与曲线的另一个交点为,以为直径的圆交直线于,两点,设劣弧所对
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
