山东省济宁市第一中学2018-2019学年高二10月阶段检测数学试题 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省济宁市第一中学2018-2019学年高二10月阶段检测数学试题 WORD版含解析 山东省 济宁市 第一 中学 2018 2019 学年 10 阶段 检测 数学试题 WORD 解析
- 资源描述:
-
1、高二数学上学期考试本试卷分第卷(选择题)和第卷(非选择题)两部分,满分150分.考试用时120分钟.第卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若,则下列不等式成立的是().A. B. C. D. 【答案】B【解析】abc,acbc0,故选B2.等差数列的公差为,前项和为,当首项和变化时,是一个定值,则下列各数也为定值的是().A. B. C. D. 【答案】C【解析】试题分析:,所以是定值,是定值考点:等差数列通项公式求和公式及性质点评:本题用到的知识点,性质:若则,此性质在数列题目中应用广泛3.已知数列中
2、,=2,1,若为等差数列,则等于( ).A. 1 B. C. D. 2【答案】C【解析】【分析】由为等差数列,结合求出数列的公差,再由等差数列的通项公式,求出,即可得到答案【详解】由数列为等差数列,则公差,所以,所以,故选C【点睛】本题主要考查了等差数列的通项公式及其应用,其中熟记等差数列的概念和通项公式的灵活应用是解答的关键,着重考查了推理与运算能力,属于基础题4.在等差数列等于( ).A. 13 B. 18 C. 20 D. 22【答案】A【解析】【分析】由已知的第2个等式减去第1个等式,利用等差数列的性质得到差为公差的3倍,且求出得值,然后再由所求得式子减去第2个等式,利用等差数列的性质
3、,也得到其公差为,把的值代入即可求得答案【详解】设等差数列的公差为,由,则,即,又由,所以,故选A【点睛】本题主要考查了等差的性质的综合应用,是一道基础题,其中熟记等差数列的性质,通过两式相减求得得值是解答的关键,着重考查了推理与运算能力5.若关于的不等式的解集是,则实数的值是( ).A. 1 B. 2 C. 3 D. 4【答案】D【解析】【分析】利用关于的不等式的解集,可得方程的两根为,利用韦达定理,即可求解【详解】由题意,关于的不等式的解集为,所以方程的两根为,由韦达定理可得,解得,故选D【点睛】本题主要考查了一元二次不等式的应用,其中解答中熟记一元二次不等式和一元二次方程,以及一元二次函
4、数之间的关系的相互转化是解答的关键,着重考查了推理与计算能力6.各项都是实数的等比数列,前项和记为,若,则等于( )A. 150 B. C. 150或 D. 400或【答案】A【解析】【分析】根据等比数列的前项和的公式化简,分别得到关于的两个关系式,求得公比的值,然后利用等比数列的前项和公式代入的值,即可求解【详解】根据等比数列的前项和的公式化简得:,所以,得到,即,解得(舍去),则,所以,故选A【点睛】本题主要考查了等比数列的通项公式及前项和公式的应用,其中解答中熟练应用等比数列的通项公式和前项和公式,合理、准确运算是解答的关键,着重考查了推理与运算能力7.不等式 对于一切恒成立,那么的取值
5、范围().A. (,3) B. (1,3 C. (,3 D. (3,3)【答案】B【解析】【分析】当时不等式即为,对一切恒成立,当时,利用二次函数的性质列出满足的条件,结合两种情况,即可得到答案【详解】当时不等式即为,对一切恒成立,当时,则须,解得,所以,综上所述,实数的取值范围是,故选B【点睛】本题主要考查了不等式的恒成立问题的求解,其中解答中熟练应用一元二次函数的图象与性质,注意对二次项系数的分类讨论是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题8.数列前项的和为( )A. B. C. D. 【答案】A【解析】【分析】把数列分成一个等差数列和一个等比数列,然后根据等差数列和等
6、比数列的前项和公式,即可求解【详解】由题意,数列的通项公式为,所以该数列的前项和为,故选A【点睛】本题主要考查了等差数列和等比数列的前项和公式的应用,其中把数列分为一个等差数列和一个等比数列,分别利用等差数列和等比数列的前项和公式求和是解答的关键,着重考查了分析问题和解答问题的能力9.等差数列,的前项和分别为,若,则=( )A. B. C. D. 【答案】B【解析】 ,而 ,故选B.10.已知为等差数列,若且它的前项和有最大值,那么当取得最小正值时( )A. B. C. D. 【答案】C【解析】试题分析:由于前项和有最大值,所以,根据,有,所以,结合选项可知,选C.考点:等差数列的基本性质.1
7、1.已知数列的前项和为159131721,则的值是().A. 13 B. 76 C. 46 D. 76【答案】B【解析】【分析】由已知可得,求得 ,即可得到答案【详解】由题意,所以 ,所以,故选B【点睛】本题主要考查了数列的前项和的应用,其中解答中认真审题,主要数列前项和公式的合理运用是解答的关键,着重考查了推理与运算能力,属于基础题12.设等差数列的前项和为,若则等于( )A. 3 B. 4 C. 5 D. 6【答案】C【解析】试题分析:所以公差 得所以解得,故选C考点:等差数列的性质及其前项和【名师点睛】本题考查等差数列的通项公式、前n项和公式及通项an与Sn的关系,考查学生的计算能力属中
8、档题 二填空题(本大题共4小题,每小题5分,共20分把答案填在题中横线上)13.设是递增等差数列,前三项的和为,前三项的积为,则它的首项是_【答案】 【解析】设等差数列的公差为 前三项的积为48即 解得 数列 是单调递增的等差数列, 故答案为214.如果数列的前n项和,则此数列的通项公式_.【答案】2n1【解析】【分析】利用数列中和的关系,计算可得数列构成以为首项,2为公比的等比数列,进而计算可得结论【详解】当时,整理得,又由当时,即,所以数列构成首项为1,公比为2的等比数列,所以数列的通项公式为【点睛】本题主要考查了等比数列的通项公式的求解,其中解答中熟记数列中和的关系是解答本题的关键,平时
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-493372.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
