2021年高考数学 考点43 直线、平面垂直的判定与性质必刷题 理(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年高考数学 考点43 直线、平面垂直的判定与性质必刷题 理含解析 2021 年高 数学 考点 43 直线 平面 垂直 判定 性质 必刷题 解析
- 资源描述:
-
1、考点43 直线、平面垂直的判定与性质1如图, 在正方体中, , 过直线的平面平面,则平面截该正方体所得截面的面积为( )A B C D 【答案】D 2已知三棱锥的四个顶点都在球的球面上,平面,是边长为2的等边三角形,若球的体积为,则直线与平面所成角的正切值为A B C D 【答案】A【解析】取的中点,则为所求线面角,利用勾股定理求出即可得出答案 3某四棱锥的三视图如图所示,其中每个小格是边长为1的正方形,则最长侧棱与底面所成角的正切值为( )A B C D 【答案】A 4如图,四棱锥中,/,为正三角形. 若,且与底面所成角的正切值为.(1)证明:平面平面;(2)是线段上一点,记(),是否存在实
2、数,使二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.【答案】(1)见解析;(2) 5如图,在斜三棱柱中,底面是边长为的正三角形,.()求证:平面平面;()求二面角的正弦值.【答案】(1)见解析;(2)设为平面的法向量,则 6如图所示:四棱锥,底面为四边形,平面平面,(1)求证: 平面;(2)若四边形中,是否在上存在一点,使得直线与平面所成的角的正弦值为,若存在求的值,若不存在,请说明理由.【答案】(1)见解析;(2)1【解析】(1)设,连接,,为中点又, 解, 7已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,ABC=900,BC=2,AC=,且AA1A1C,A
3、A1=A1C()求侧棱A1A与底面ABC所成角的大小;()求侧面A1ABB1与底面ABC所成二面角的大小。 ,由图形得侧面A1ABB1与底面ABC所成二面角为锐角,侧面A1ABB1与底面ABC所成二面角的大小为600【点睛】(1)用几何法求空间角时,要体现出“一作、二证、三计算”的步骤,即先作出所求的角,然后通过解三角形得到所求角的大小(或某一三角函数值)(2)用向量法求空间角时,在求得两向量的夹角后,还要注意向量的夹角和所求空间角的关系,即要把向量的夹角转化为所求的空间角8(题文)(题文)在三棱锥中,(1)求证:;(2)点为上一动点,设为直线与平面所形成的角,求的最大值【答案】(1)见解析;
4、(2).则,设, ,即, , 9如图,在三棱柱中, .(I)求证:;(II)在棱 上取一点 M, ,若与平面所成角的正弦值为,求.【答案】(1)见解析(2) 10如图,ABC和BCD所在平面互相垂直,且ABBCBD2,ABCDBC120,E,F分别为AC,DC的中点(1)求证:EFBC;(2)求二面角EBFC的正弦值【答案】(1)见解析(2)则cos |cosn1,n2|,因此sin ,即二面角EBFC的正弦值为. 11如图,已知四棱锥的底面为菱形,(1)求证:;(2)若,求二面角的余弦值.【答案】(1)见解析(2) 12如图,在棱长为的正方体中,分别在棱,上,且.(1)已知为棱上一点,且,求
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-494067.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
