河北省唐山市开滦第二中学高二数学导学案:选修1-1 3.3.3.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省唐山市开滦第二中学高二数学导学案:选修1-1 3.3.3 河北省 唐山市 开滦 第二 中学 数学 导学案 选修 3.3
- 资源描述:
-
1、【学习目标】理解函数的最大值和最小值的概念; 掌握用导数求函数最值的方法和步骤【重点难点】导数求函数最值的方法和步骤【学习内容】一、课前准备复习1:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的 点,是极 值;如果在两侧满足“左负右正”,则是的 点,是极 值复习2:已知函数在时取得极值,且,(1)试求常数a、b、c的值;(2)试判断时函数有极大值还是极小值,并说明理由.二、新课导学 学习探究探究任务一:函数的最大(小)值 问题:观察在闭区间上的函数的图象,你能找出它的极大(小)值吗?最大值,最小值呢? 图2图1在图1中,在闭区间上的最大值是 ,最小值
2、是 ;在图2中,在闭区间上的极大值是 ,极小值是 ;最大值是 ,最小值是 .新知:一般地,在闭区间上连续的函数在上必有最大值与最小值. 试试: 上图的极大值点 ,为极小值点为 ;最大值为 ,最小值为 .反思:1.函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的2.函数在闭区间上连续,是在闭区间上有最大值与最小值的 条件3.函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,可能一个没有. 典型例题例1 求函数在上的最大值与最小值.小结:求最值的步骤例2 已知,(0,+).是否存在实数,使同时满足下列两个条件:(1)在上是减函数,在上是增函
3、数;(2)的最小值是1;若存在,求出,若不存在,说明理由.变式:设,函数在区间上的最大值为1,最小值为,求函数的解析式. 小结:本题属于逆向探究题型.解这类问题的基本方法是待定系数法,从逆向思维出发,实现由已知向未知的转化,转化过程中通过列表,直观形象,最终落脚在比较极值点与端点值大小上,从而解决问题练1. 求函数的最值练2. 已知函数在上有最小值.(1)求实数的值;(2)求在上的最大值三、总结提升 学习小结设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:求在内的极值;将的各极值与、比较得出函数在上的最值.课后作业1. 若函数在区间上的最大值、最小值分别为M、N,则的值为( )A2 B4 C18 D202. 函数 ( )A有最大值但无最小值B有最大值也有最小值C无最大值也无最小值D无最大值但有最小值3. 已知函数在区间上的最大值为,则等于( )A B C D或4. 函数在上的最大值为 5. 已知(为常数)在上有最大值,那么此函数在上的最小值是 6. 为常数,求函数的最大值.7. 已知函数,(1)求的单调区间;(2)若在区间上的最大值为20,求它在该区间上的最小值.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
