三轮押题冲刺 2013高考数学基础知识最后一轮拿分测验 数列的求和 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三轮押题冲刺 2013高考数学基础知识最后一轮拿分测验 数列的求和 WORD版含答案 三轮 押题 冲刺 2013 高考 数学 基础知识 最后 一轮 测验 数列 求和 WORD 答案
- 资源描述:
-
1、高考资源网() 您身边的高考专家数列的求和【考点导读】对于一般数列求和是很困难的,在推导等差、等比数列的和时出现了一些方法可以迁移到一般数列的求和上,掌握数列求和的常见方法有: (1)公式法: 等差数列的求和公式, 等比数列的求和公式(2)分组求和法:在直接运用公式求和有困难时常,将“和式”中的“同类项”先合并在一起,再运用公式法求和(如:通项中含因式,周期数列等等)(3)倒序相加法:如果一个数列a,与首末两项等距的两项之和等于首末两项之和,则可用把正着写和与倒着写和的两个和式相加,就得到了一个常数列的和,这一求和方法称为倒序相加法。特征:an+a1=an-1+a2(4)错项相减法:如果一个数
2、列的各项是由一个等差数列与一个等比数列的对应项相乘所组成,此时求和可采用错位相减法。(5)裂项相消法:把一个数列的各项拆成两项之差,在求和时一些正负项相互抵消,于是前n项之和变成首尾若干少数项之和。【基础练习】1已知公差不为0的正项等差数列an中,Sn为前n项之和,lga1、lga2、lga4成等差数列,若a5=10,则S5 = 30 。2设,则等于。3已知数列an是等差数列,首项a1,a2005a2006,a2005a2006,则使前n项之和Sn成立的最大自然数n是 。4已知数列an是等差数列,且a2=8,a8=26,从an中依次取出第3项,第9项,第27项,第3n项,按原来的顺序构成一个新
3、的数列bn, 则bn=_3n+1+2_5 若数列满足:,2,3.则. 【范例导析】例1.已知等比数列分别是某等差数列的第5项、第3项、第2项,且()求; ()设,求数列解:(I)依题意 (II)点评:本题考查了等比数列的基本性质和等差数列的求和,本题还考查了转化的思想。例2数列前项之和满足:(1) 求证:数列是等比数列;(2) 若数列的公比为,数列满足:,求数列的通项公式;(3) 定义数列为,求数列的前项之和。解:(1)由得:两式相减得:即, 数列是等比数列。 (2),则有 。 (3),点评:本题考查了与之间的转化问题,考查了基本等差数列的定义,还有裂项相消法求和问题。例3已知数列满足,()求
4、数列的通项公式; ()设,求数列的前项和;()设,数列的前项和为求证:对任意的,分析:本题所给的递推关系式是要分别“取倒”再转化成等比型的数列,对数列中不等式的证明通常是放缩通项以利于求和。解:(),又,数列是首项为,公比为的等比数列 , 即. () (), 当时,则, 对任意的, 点评:本题利用转化思想将递推关系式转化成我们熟悉的结构求得数列的通项,第二问分组求和法是非常常见的方法,第三问不等式的证明要用到放缩的办法,放缩的目的是利于求和,所以通常会放成等差、等比数列求和,或者放缩之后可以裂项相消求和。备用题已知数列,点(an,an+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-509953.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
新概念英语第一册8-10(共25张PPT).ppt
