河北省定州中学2017届高三数学(理)上学期一轮复习学案:第2课 导数的应用-求参数范围 WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省定州中学2017届高三数学理上学期一轮复习学案:第2课 导数的应用-求参数范围 WORD版含答案 河北省 定州 中学 2017 届高三 数学 上学 一轮 复习 导数 应用 参数 范围 WORD
- 资源描述:
-
1、高三数学高高三一轮复习学案自助学习 增强感悟 自我发展 不断提高第2课导数的应用参数范围例1 已知函数(1) 若在处的切线平行于直线,求函数的单调区间;(2) 若,且对时,恒成立,求实数的取值范围.解: (1) 定义域为,直线的斜率为,.所以 由; 由所以函数的单调增区间为,减区间为.(2) ,且对时,恒成立,即.设.当时, ,当时, ,.所以当时,函数在上取到最大值,且所以,所以所以实数的取值范围为.(法二)讨论法,在上是减函数,在上是增函数.当时,解得,.当时,解得,.综上.变式1 已知函数,(其中R,为自然对数的底数).(1)当时,求曲线在处的切线方程;(2)当1时,若关于的不等式0恒成
2、立,求实数的取值范围.解:(1)当时,,切线方程为(2)方法一1,12)(2-=axxexfxa0xxex122-, 设xxexgx12)(2-=,则2212)1()(xxexxgx+-=, 设,则, 在上为增函数,在上为增函数,方法二,设, 0,0,在上为增函数,.又0恒成立,0,在上为增函数, 此时0恒成立,变式2条件改x0时,0恒成立.解:先证明在上是增函数,再由洛比达法则,1.(正常的讨论进行不了,除非系数调到二次项上,分两种情况讨论可得1)例2.(15年山东理科)设函数,其中.()讨论函数极值点的个数,并说明理由;()若,成立,求的取值范围.解:(),定义域为,设,当时,函数在为增函
3、数,无极值点.当时,若时,函数在为增函数,无极值点.若时,设的两个不相等的实数根,且,且,而,则,所以当单调递增;当单调递减;当单调递增.因此此时函数有两个极值点;当时,但,所以当单调递増;当单调递减.所以函数只有一个极值点。 综上可知当时的无极值点;当时有一个极值点;当时,的有两个极值点.()由()可知当时在单调递增,而,则当时,符合题意;当时,在单调递增,而,则当时,符合题意;当时,所以函数在单调递减,而,则当时,不符合题意;当时,设,当时,在单调递增,因此当时,于是,当时,此时,不符合题意.综上所述,的取值范围是.另解:(),定义域为,当时,函数在为增函数,无极值点.设,当时,根据二次函
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-512019.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
六年级下册英语课件-recycle 人教(PEP)(共22张PPT).ppt
