分享
分享赚钱 收藏 举报 版权申诉 / 11

类型专题08 二次函数与菱形存在型问题-2019版突破中考数学压轴之学霸秘笈大揭秘(学生版)学霸冲冲冲shop348121278.taobao.com.doc

  • 上传人:a****
  • 文档编号:513095
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:11
  • 大小:818KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题08 二次函数与菱形存在型问题-2019版突破中考数学压轴之学霸秘笈大揭秘学生版学霸冲冲冲shop348121278.taobao.com 专题 08 二次 函数 菱形 存在 问题 2019 突破
    资源描述:

    1、【典例分析】例1 如图,在平面直角坐标系中,直线AB和抛物线交于点A(-4,0),B(0,4),且点B是抛物线的顶点(1)求直线AB和抛物线的解析式(2)点P是直线上方抛物线上的一点,求当PAB面积最大时点P的坐标(3)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由例2如图,抛物线的图象经过点A(2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD来源:Z。xx。k.Com(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足ECD=ACO的点E的坐标;(3)点M在

    2、y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长例3如图,已知点A (2,4) 和点B (1,0)都在抛物线上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A,点B的对应点为B,若四边形A ABB为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB 的交点为C,试在x轴上找一个点D,使得以点B、C、D为顶点的三角形与ABC相似.例4如图,在平面直角坐标系中,已知抛物线与轴交于O点、A点,B为抛物线上一点,C为y轴上一点,连接BC,且BC/OA,已知点O(0,0),A(6,0),B(

    3、3,m),AB=.(1)求B点坐标及抛物线的解析式.,(2)M是CB上一点,过点M作y轴的平行线交抛物线于点E,求DE的最大值;(3)坐标平面内是否存在一点F,使得以C、B、D、F为顶点的四边形是菱形?若存在,求出符合条件的点F坐标;若不存在,请说明理由. 例5如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当FAB=EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时

    4、,求菱形对角线MN的长例6如图(1),已知菱形的边长为,点在轴负半轴上,点在坐标原点,点的坐标为(,),抛物线顶点在边上,并经过边的中点(1)求这条抛物线的函数解析式;(2)点关于直线的对称点是,求点到点的最短距离;(3)如图(2)将菱形以每秒个单位长度的速度沿轴正方向匀速平移,过点作于点,交抛物线于点,连接、设菱形平移的时间为秒(),问是否存在这样的,使与相似?若存在,求出的值;若不存在,请说明理由【变式训练】1如图,在平面直角坐标系中,点A(,0)是轴上一点,以OA为对角线作菱形OBAC,使得60,现将抛物线沿直线OC平移到,则当抛物线与菱形的AB边有公共点时,则m的取值范围是( )A B

    5、 C D2直线与轴交于点A,与直线交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线的顶点在直线上移动,若抛物线与菱形的边AB、BC都有公共点,则的取值范围是( )A B C D3如图1,菱形ABCD的对角线交于点O,AC=2BD,点P是 AO上一个动点,过点P 作AC的垂线交菱形的边于M,N两点设APx,OMN的面积为y,表示y与x的函数关系大致如图2所示的抛物线(1)图2所示抛物线的顶点坐标为( , ) ;(2)菱形ABCD的周长为 4二次函数的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y轴上,相邻的菱形在y轴上有一个

    6、公共点),则第2017个菱形的周长=_5如图,在平面直角坐标系中,菱形ABCD的三个顶点A,B,D均在抛物线y=ax24ax+3(a0)上若点A是抛物线的顶点,点B是抛物线与y轴的交点,则点D的坐标为_6如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C在x轴的负半轴,抛物线y=(x2)2+k过点A(1)求k的值;(2)若把抛物线y=(x2)2+k沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点C试判断点B是否落在平移后的抛物线上,并说明理由7如图,已知点A (-2,4) 和点B (1,0)都在抛物线y=mx2+2mx+n上BAO1111xy(1)求

    7、m、n值;(2)向右平移上述抛物线,记平移后点A的对应点为A,点B的对应点为B,若四边形为菱形,求平移后抛物线的表达式;(3)试求出菱形的对称中心点M的坐标8如图1,抛物线,其中,点A(-2,m)在该抛物线上,过点A作直线lx轴,与抛物线交于另一点B,与y轴交于点C.(1)求m的值.(2)当a=2时,求点B的坐标.(3)如图2,以OB为对角线作菱形OPBQ,顶点P在直线l上,顶点Q在x轴上.若PB=2AP,求a的值.菱形OPBQ的面积的最小值是 .9如图,抛物线C1:y=(x+3)2与x,y轴分别相交于点A,B,将抛物线C1沿对称轴向上平移,记平移后的抛物线为C2,抛物线C2的顶点是D,与y轴

    8、交于点C,射线DC与x轴相交于点E,(1)求A,B点的坐标;(2)当CE:CD=1:2时,求此时抛物线C2的顶点坐标;(3)若四边形ABCD是菱形此时抛物线C2的解析式;点F在抛物线C2的对称轴上,且点F在第三象限,点M在抛物线C2上,点P是坐标平面内一点,是否存在以A,F,P,M为顶点的四边形与菱形ABCD相似,并且这个菱形以A为顶点的角是钝角,若存在求出点F的坐标,若不存在请说明理由10如图,抛物线与坐标轴相交于、三点,是线段上一动点(端点除外),过作,交于点,连接 (1)直接写出、的坐标;(2)求抛物线的对称轴和顶点坐标;(3)求面积的最大值,并判断当的面积取最大值时,以、为邻边的平行四

    9、边形是否为菱形11如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a0)与x轴交于点O、M对称轴为直线x=2,以OM为直径作圆A,以OM的长为边长作菱形ABCD,且点B、C在第四象限,点C在抛物线对称轴上,点D在y轴负半轴上;(1)求证:4a+b=0;(2)若圆A与线段AB的交点为E,试判断直线DE与圆A的位置关系,并说明你的理由;(3)若抛物线顶点P在菱形ABCD的内部且OPM为锐角时,求a的取值范围12如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M(1)求b、c的值;来源:ZXXK(2)若只沿y轴上下平移该抛物线后与y轴

    10、的交点为A1,顶点为M1,且四边形AMM1A1是菱形,写出平移后抛物线的表达式13如图,已知抛物线与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为 来源:Z_xx_k.Com来源:+网Z+X+X+K14如图,的顶点坐标分别为,把沿直线翻折,点的对应点为,抛物线经过点,顶点在直线上证明四边形是菱形,并求点的坐标;求抛物线的对称轴和函数表达式;在抛物线上是否存在点,使得与的面积相等?若存在,直接写出点的坐标

    11、;若不存在,请说明理由15如图1,已知菱形ABCD的边长为,点A在x轴负半轴上,点B在坐标原点点D的坐标为(- ,3),抛物线y=ax2+b(a0)经过AB、CD两边的中点(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BECD于点E,交抛物线于点F,连接DF、AF设菱形ABCD平移的时间为t秒(0t 3 )是否存在这样的t,使ADF与DEF相似?若存在,求出t的值;若不存在,请说明理由;连接FC,以点F为旋转中心,将FEC按顺时针方向旋转180,得FEC,当FEC落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求

    12、t的取值范围(写出答案即可)16如图,已知抛物线y=ax2+bx4与x轴交于A(2,0),B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,作菱形BDEC,使其对角线在坐标轴上,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q(1)求抛物线的解析式;(2)将抛物线向上平移n个单位,使其顶点在菱形BDEC内(不含菱形的边),求n的取值范围;(3)当点P在线段OB上运动时,直线l交BD于点M试探究m为何值时,四边形CQMD是平行四边形,并说明理由17已知抛物线m的顶点为(1,0),且经过点(0,1)(1)求该抛物线对应的函数的解析式; (2)将该抛物线向

    13、下平移m个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C(点B在点C的左侧),若ABC为等边三角形求m的值; 设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使得以点P、C、B、D为顶点构成的四边形是菱形?若存在,请写出点P的坐标;若不存在,请说明理由18如图12,已知抛物线过点,过定点的直线与抛物线交于,两点,点在点的右侧,过点作轴的垂线,垂足为.(1)求抛物线的解析式;(2)当点在抛物线上运动时,判断线段与的数量关系(、),并证明你的判断;(3)为轴上一点,以为顶点的四边形是菱形,设点,求自然数的值;(4)若,在直线下方的抛物线上是否存在点,使得的面积最大,若存在,求出点的

    14、坐标及的最大面积,若不存在,请说明理由. 19已知抛物线的顶点为(1,0),且经过点(0,1)(1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m(m0)个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C,若ABC为等边三角形求m的值;来源:Zxxk.Com设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P的坐标;若不存在,请说明理由20如图,已知点A (0,4) 和点B (3,0)都在抛物线上(1)求、n;(2)向右平移上述抛物线,记平移后点A的对应点为D,点B的对应点为C,若四边形A BCD为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AC的交点为点E,试在轴上找点F,使得以点C、E、F为顶点的三角形与 ABE相似。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题08 二次函数与菱形存在型问题-2019版突破中考数学压轴之学霸秘笈大揭秘(学生版)学霸冲冲冲shop348121278.taobao.com.doc
    链接地址:https://www.ketangku.com/wenku/file-513095.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1