专题54:第12章压轴题之猜想证明类- 中考数学解题方法系统训练(全国通用)(解析版).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题54:第12章压轴题之猜想证明类- 中考数学解题方法系统训练全国通用解析版 专题 54 12 压轴 猜想 证明 中考 数学 解题 方法 系统 训练 全国 通用 解析
- 资源描述:
-
1、54第12章压轴题之猜想证明类一、单选题1如图,ACB=90,AC=BC,CD平分ACB,点D,E关于CB对称,连接EB并延长,与AD的延长线交于点F,连接DE,CE对于以下结论:DE垂直平分CB;AD=BE;F不一定是直角;EF2DF2=2CD2其中正确的是()ABCD【答案】D【分析】根据点D,E关于CB对称,可得CB垂直平分DE,即可判断错误;根据CB垂直平分DE,连接BD,可得BD=BE,证明ACDBCD,可得AD=BD,即可判断;结合证明ACDBCDBCE,可得CAD=CEB=(180-45)=67.5,FED=67.5-45=22.5,进而证明角F的度数,即可判断;在RtFDE中,
2、根据勾股定理,得EF2+DF2=DE2,根据DCE=90,CD=CE,即可判断【解答】点D、E关于CB对称,CB垂直平分DE,所以错误;连接BD,如图,CB垂直平分DE, BD=BE,ACB=90,CD平分ACB,ACD=BCD=45,在ACD和BCD中,ACDBCD(SAS),AD=BD,AD=BE,所以正确;CB垂直平分DE, BD=BE,CD=CE,在BCD和BCE中, BCDBCE(SSS),ACDBCDBCE,ACD=DCB=ECB=45,CA=CD=CB=CE,CAD=CEB=(180-45)=67.5,CED=CDE=(180-DCB-ECB) =45,FED=67.5-45=2
3、2.5,CDE=ACD=45,DEAC,FDE=A=67.5,F=180-FDE-FED=90,所以错误;在RtFDE中,根据勾股定理,得:EF2+DF2=DE2,DCE=DCB+ECB=90,CD=CE,DE2=CD2+CE2=2CD2,EF2+DF2=2CD2,所以正确综上所述:正确的是故选:D【点评】本题考查了轴对称的性质、等腰直角三角形、线段垂直平分线的性质,解决本题的关键是综合运用以上知识2如图,过的对角线上一点作分别交于点分别交于点,那么图中四边形的面积与四边形的面积的大小关系是( )ABCD不能确定【答案】B【分析】先证四边形BMKQ、四边形PKND是平行四边形得SABDSBCD
4、,SBMKSBQK,SPKDSNKD,据此可得【解答】四边形ABCD是平行四边形,ABCD,ADBC,又MNBC,PQAB,四边形BMKQ、四边形PKND是平行四边形,SABDSBCD,SBMKSBQK,SPKDSNKD,S1S2,故选:B【点评】本题主要考查平行四边形的性质,解题的关键是掌握平行四边形的判定与性质及对角线将平行四边形面积平分的性质3已知的三条边长分别为6,8,12,过任一顶点画一条直线,将分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A6条B7条C8条D9条【答案】B【分析】不妨设AB=6,AC=8,BC=12,分别作三边的垂直平分线,则可得三条,再分
5、以AB、AC为腰和底进行讨论,可得出结论【解答】解:不妨设AB=6,AC=8,BC=12,分别作三边的垂直平分线,如图1,则BD=AD,EA=EC,FB=FC,可知AE、BF、AD满足条件;当AB为腰时,以点A为圆心,AB为半径画圆,分别交BC、AC于点G、H,以B为圆心,AB为半径,交BC于点J,如图2,则AB=AG,AB=AH,BA=BJ,满足条件;当AC为腰时,如图3,以点C为圆心,CA为半径画圆,交BC于点M,则CA=CM,满足条件;当A为圆心AC为半径画圆时,与AB、BC都没有交点,因为BC为最长的边,所以不可能存在以BC为腰的等腰三角形,综上可知满足条件的直线共有7条.故选B【点评
6、】本题主要考查等腰三角形的判定,利用垂直平分线的性质及圆的基本性质找到满足条件的直线是解题的关键4如图,在中,直角的顶点是中点,、分别交、于点、给出以下四个结论:;是等腰直角三角形;上述结论正确的有( )A1个B2个C3个D4个【答案】C【分析】根据等腰三角形的性质可得PAE=BAC=45,B=C=45,PABC,可得C=PAE,根据直角三角形斜边中线的性质可得PA=PC,根据角的和差关系可得FPC=EPA,利用ASA可证明EPAFPC,根据全等三角形的性质可得AE=CF,PE=PF,由EPF=90,可得EPF是等腰直角三角形,可判定正确;根据全等三角形的性质可知SEPA=SFPC,可得S四边
7、形AEPF=SAPC,由SAPC=SABC可判定正确;只有当EF为ABC的中位线时,EF=PC=PA,可判定错误;综上即可得答案【解答】AB=AC,BAC=90,B=C=45,点P为BC中点,AB=AC,BAC=90,PAE=PAC=45,PA=PC,APBC,C=PAC,EPF=EPA+APF=90,FPC+APF=90,EPA=FPC,在EPA和FPC中,EPAFPC,AE=CF,PE=PF,故正确,EPF=90,EPF是等腰直角三角形,故正确,EPAFPC,SEPA=SFPC,S四边形AEPF=SEPA+SPAF=SFPC+SPAF=SAPC,PC=BC,SAPC=SABC,S四边形AE
8、PF=SABC,故正确,只有当EF为ABC的中位线时,EF=PC=PA,故错误;综上所述:正确的结论有,共3个,故选:C【点评】本题主要考查了等腰三角形和直角三角形的性质,综合利用了全等三角形的判定,熟练掌握全等三角形的判定定理是解题关键5如图,在中,是边上的动点(不与点重合),将沿所在直线翻折,得到,连接, 则下面结论错误的是( )A当时,B当时,C当 时,D长度的最小值是1【答案】C【分析】A根据折叠性质和三角形内角和定理可证ABP=CPB,从而可证;根据折叠性质和直角三角形斜边上的中线等于斜边的一半可知PA=PB=PC=PB,A、B、C、B四点共圆,根据圆周角定理即可求出;C根据相似三角
9、形的判定证得PACCAB,再根据相似三角形的对应边成比例求得AP的值,即可判断错误;D. 根据两点之间线段最短,求得长度的最小值,即可判断此结论正确【解答】在ABC中,ACB=90,AP=BP,AP=BP=CP,BPC=由折叠的性质可得CP=BP,CPB=BPC=AP=BP,ABP=BAP=ABP=CPBAB/CP故A正确;AP=BP,PA=PB=PC=PB,点A,B,C,B在以点P为圆心,PA长为半径的圆上由折叠的性质可得BC=BC,BPC=2BAC故B正确;当CPAB时,APC=ACBPAC=CABPACCAB在RtABC中,AC=AP=故C错误;由轴对称的性质可知:BC=CB=3CB长度
10、固定不变,当AB+CB有最小值时,AB的长度有最小值根据两点之间线段最短可知:当A、B、C三点在一条直线上时,AB有最小值,AB=AC-BC=4-3=1故D正确故选:C【点评】本题考查折叠的性质、勾股定理、相似三角形的判定及性质、圆周角的定理,根据折叠性质得出相等的线段或相等的角是解决问题的关键6如图,中,是上一点,且,是上任一点,于点,于点,下列结论:是等腰三角形;,其中正确的结论是( )ABCD【答案】B【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得ADBCDBC,然后求出CDBC,再根据等角对等边可得DCDB,从而判断正确;没有条件说明C的度数,判断出错误;连接PD,利用B
11、CD的面积列式求解即可得到PEPFAB,判断出正确;过点B作BGAC交FP的延长线于G,根据两直线平行,内错角相等可得CPBG,GCFP90,然后求出四边形ABGF是矩形,根据矩形的对边相等可得AFBG,根据然后利用“角角边”证明BPE和BPG全等,根据全等三角形对应边相等可得BGBE,再利用勾股定理列式求解即可判断正确【解答】在BCD中,ADBCDBC,ADB2C,CDBC,DCDB,DBC是等腰三角形,故正确;无法说明C30,故错误;连接PD,则SBCDBDPEDCPFDCAB,PEPFAB,故正确;过点B作BGAC交FP的延长线于G, 则CPBG,GCFP90,PBGDBC,四边形ABG
12、F是矩形,AFBG,在BPE和BPG中,BPEBPG(AAS),BGBE,AFBE,在RtPBE中,PE2BE2BP2,即PE2AF2BP2,故正确综上所述,正确的结论有故选:B【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,勾股定理的应用,作辅助线构造出矩形和全等三角形是解题的关键7横、纵坐标均为整数的点称为整点如图,一列有规律的整点,其坐标依次为,根据这个规律,第个整点的坐标为( )ABCD【答案】A【分析】根据图像,到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,计算即可得到答案【解答】补充作图,如下图,由图
13、可知,点是第1个点,点是第9个点,点是第25个点,观察图可知,直线上共有个点,又因为且,所以第2019个点在直线上且在点上方相距6个单位长度,所以第2019个点为故选A【点评】本题主要考查坐标的确定,能根据已知条件发现点的规律是解题的关键8如图,已知:在等腰中,BE平分,交AC于F,且于点E,BC边上的中线AD交BE于G,连接DE,则下列结论正确的是( );ABCD【答案】B【分析】过点F作FPBC于点P,延长BA,CE交于点H,通过证明AGF=AFG判断;再证明ABE=BED,根据平行线的判定得到;再通过证明证明ABFACH得到BF=CH,从而证明HEBCEB,得到CE=EH,可判断;证明R
14、tABFRtPBF,得到AB+AF=BP+FP,再通过说明FPC是等腰直角三角形得到FP=CP,即可判断;最后证明ABFDBG,得到BG和BF的比,利用BF和CE的关系判断.【解答】解:过点F作FPBC于点P,延长BA,CE交于点H,BE平分,为等腰直角三角形,D为BC中点,ABF=CBF=22.5,AF=PF,BGD=AGF=AFG,AG=AF,故正确,BEC=90,D为BC中点,DE=BD=CD,BED=DBE=22.5=ABE,ABDE,故正确,CAH=BAF=BEC=90,ACH+H=90,ABF+H=90,ACH=ABF,在ABF和ACH中,ABFACH(ASA),BF=CH,BE平
15、分ABC,HBE=CBE,BEC=90,BEC=BEH=90,在HEB和CEB中,HEBCEB(ASA),CE=EH,CH=2CE,BF=2CE,故正确,在RtABF和RtPBF中,RtABFRtPBF(HL),AB=PB,在PFC中,BCF=45,FPC=90,FP=CP,BP+CP=BP+FP=BC=AB+AF,故错误,ABG=CBG,BAF=GDB=90,ABFDBG,即BF=BG,又BF=2CE,BG=CE,故正确.故选B.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,综合性较强,解题的关键是结合所学知识逐项判定各选项,并且利用
16、已经证明的结论来证明未知的结论.9如图,在中,是高,是中线,是角平分线,交于点G,交于点H,下面说法正确的是( )的面积的面积;ABCD【答案】B【分析】根据等底等高的三角形的面积相等即可判断;根据三角形内角和定理求出ABC=CAD,根据三角形的外角性质即可推出;根据三角形内角和定理求出FAG=ACD,根据角平分线定义即可判断;根据等腰三角形的判定判断即可【解答】解:BE是中线,AE=CE,ABE的面积=BCE的面积(等底等高的三角形的面积相等),故正确;CF是角平分线,ACF=BCF,AD为高,ADC=90,BAC=90,ABC+ACB=90,ACB+CAD=90,ABC=CAD,AFG=A
17、BC+BCF,AGF=CAD+ACF,AFG=AGF,故正确;AD为高,ADB=90,BAC=90,ABC+ACB=90,ABC+BAD=90,ACB=BAD,CF是ACB的平分线,ACB=2ACF,BAD=2ACF,即FAG=2ACF,故正确;根据已知条件不能推出HBC=HCB,即不能推出BH=CH,故错误;故选:B【点评】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型10如图,在平行四边形ABCD中,点O是对角线BD的中点,过点O作线段EF,使点E点F分别在边AD,BC上(不
18、与四边形ABCD顶点重合),连结EB,EC设EDkAE,下列结论:若k1,则BECE;若k2,则EFC与OBE面积相等:若ABEFEC,则EFBD其中正确的是( ) ABCD【答案】B【分析】根据题意,不能证明BAECDE,则错误;根据平行四边形的性质和全等三角形的判定和性质,得到BF=2CF,结合面积的计算方法,即可判断;连接DF,不能证明四边形DEBF是菱形,则错误;然后得到答案【解答】解:当k1时,DE=AE,不能证明BAECDE,BECE;故错误;当k2时,DE=2AE,四边形ABCD是平行四边形,ADBC,AD=BC,EDO=FBO,点O是BO的中点,OB=OD,EOD=FOB,EO
19、DFOB,DE=BF,ADDE=BCBF,AE=CF,BF=2CF,故正确;连接DF,如图:ABEFEC,AE=FC,DE=BF,DEBF,四边形DEBF是平行四边形,不能证明DEBF是菱形,EF与BD无法证明互相垂直,故错误;正确的选项只有;故选:B【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握所学的知识,从而分别进行判断二、填空题11如图,在RtABC中,BAC90,ABC的平分线交AC于D过点A作AEBC于E,交BD于G,过点D作DFBC于F,过点G作GHBC,交AC于点H,则下列结论:BAEC;SABG:SEBGAB:BE;ADF2
20、CDF;四边形AGFD是菱形;CHDF其中正确的结论是_【答案】【分析】根据余角的性质可判断即可;根据角平分线的性质判断即可;根据菱形的判定方法判断即可;证明ABGFBG(AAS),得出BAE=BFG,证出BFG=C,再证出四边形GFCH是平行四边形,得出GF=CH,因此CH=DF,可判断;当C=30时,ADF=2CDF;不正确;即可得出答案【解答】解:BAC=90,BAE+CAE=90,AEBC,C+CAE=90,BAE=C,正确;作GMAB交AB于M,如图所示:BD平分ABC,AEBC,GM=GE,SABG:SEBG=ABGM:BEGE=AB:BE;正确;AGD=ABD+BAE,ADG=C
21、BD+C,BAE=C,CBD=ABD,AGD=ADG,AG=AD,BAC=90,BD平分ABCDFBC,AD=DF,AG=DF,AEBC,AGDF,四边形AGFD是平行四边形,又AG=AD,四边形AGFD是菱形;正确;四边形AGFD是菱形;AGD=FGD,GF=DF,ADB=FDB,AGB=FGB,在ABG和FBG中,ABGFBG(AAS),BAE=BFG,BAE=C,BFG=C,GFCH,GHBC,四边形GFCH是平行四边形,GF=CH,CH=DF,正确;四边形AGFD是菱形ADF=2ADB,当C=30,CDF=60,则ADF=120,当C=30,ADF=2CDF;不一定正确;故答案为:【点
22、评】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定、角平分线的性质等知识;本题综合性强,有一定难度12已知:如图,ABCADC90,M、N分别是AC、BD的中点,AC10,BD8,则MN_【答案】3【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到BMDM5,根据等腰三角形的性质得到BN4,根据勾股定理得到答案【解答】解:连接BM、DM,ABCADC90,M是AC的中点,BMDMAC5,N是BD的中点,MNBD,BNBD4,由勾股定理得:MN3,故答案为:3【点评】此题主要考查矩形性质、等腰三角形的性质及勾股定理的应用,解题的关键是熟知直角
23、三角形中,斜边上的中线等于斜边的一半13如图,在中,平分,与的延长线交于,连接过作于,交于下列结论:;中,其中正确的有_(填序号)【答案】【分析】由,利用角平分线的性质可得,可得,四点共圆,由圆周角定理可得结论;证明,利用全等三角形的性质可得结论;由,易得,由等腰三角形的性质易得,得的面积;由为等腰三角形易得,可得结论【解答】解:平分,四点共圆,故此选项正确;在与中,故此选项正确;,故此选项正确;为等腰三角形,故此选项正确;正确的有故答案为:【点评】本题主要考查了角平分线的性质,等腰三角形的性质等,综合运用各性质定理是解答此题的关键14如图,矩形中,点在边上(不与重合),将矩形沿折叠,使点分别
24、落在点处有下列结论:与互余;若平分则若直线经过点则若直线交边分别于当为等腰三角形时,五边形的周长为其中正确结论的序号是_【答案】【分析】根据折叠的性质知,转化相关角度进行判断;根据折叠的性质知,再根据平分从而得出,从而求算正切值;直线经过点,此时,从而求算,再根据相似求算EF,可得结论;当DMN时等腰三角形时,可得均为等腰直角三角形,从而计算相应长度,可得结论【解答】解:根据折叠的知设 , 正确;根据折叠的性质知,再根据平分 即 即,错误;直线经过点D: 解得: ,正确;当DMN时等腰三角形时,可得均为等腰直角三角形,如图: 五边形的周长= 正确故答案为:【点评】本题考查矩形折叠问题,同时与相
25、似三角形、特殊角三角函数值、等腰三角形等相结合,转化相关的线段与角度之间的关系式解题关键15已知点是反比例函数图象上的动点,轴,轴,分别交反比例函数的图象于点、,交坐标轴于、,且,连接.现有以下四个结论:;在点运动过程中,的面积始终不变;连接,则;不存在点,使得.其中正确的结论的序号是_【答案】【分析】由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,并找出点C坐标,根据AC=3CD,即可得出关于k的一元一次方程,解方程即可得出结论;根据得出A、C的坐标,由ABx轴找出B点的坐标,由此即可得出AB、AC的长度,利用三角形的面积公式即可得出结论;已知B(,),C(a,),D(a,0),E
26、(0,)四点坐标,B、C、D、E四点坐标,经过B、C两点的直线斜率k1=,经过D、E两点的直线斜率k2=,得出,即先假设,得到对应边成比例,列出关于a的等式,看a是否有解,即可求解【解答】A(a,b),且A在反比例函数的图象上,ACy轴,且C在反比例函数的图象上,C(a,)又AC=3CD,AD=4CD,即k=2故正确由可知:A(a,),C(a,)ABx轴,B点的纵坐标为,点B在反比例函数的函数图象上,解得:x=,点B(,),AB=a=,AC=S=ABAC=在点A运动过程中,ABC面积不变,始终等于故正确连接DE,如图所示B(,),C(a,)经过B、C两点的直线斜率k1=轴,轴D(a,0),E(
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-514623.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
