2022年高考数学一轮复习 单元质检3 导数及其应用(含解析)新人教A版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学一轮复习 单元质检3 导数及其应用含解析新人教A版 2022 年高 数学 一轮 复习 单元 质检 导数 及其 应用 解析 新人
- 资源描述:
-
1、单元质检三导数及其应用(时间:100分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.如果一个物体的运动方程为s=1-t+t2,其中s的单位是m,t的单位是s,那么物体在3 s末的瞬时速度是()A.7 m/sB.6 m/sC.5 m/sD.8 m/s答案:C解析:根据瞬时速度的意义,可得3s末的瞬时速度是v=s|t=3=(-1+2t)|t=3=5.2.设曲线y=x+1x-1在点(3,2)处的切线与直线ax+y+3=0垂直,则a等于()A.2B.-2C.12D.-12答案:B解析:因为y=x+1x-1的导数为y=-2(x-1)2,所以曲线在点(3,2)处的切线斜率k=-
2、12.又因为直线ax+y+3=0的斜率为-a,所以-a-12=-1,解得a=-2.3.若函数y=ex+mx有极值,则实数m的取值范围是()A.m0B.m1D.m0,若y=ex+mx有极值,则必须使y的值有正有负,故m0.4.已知函数f(x)=-x3+ax2-x-1在R上是减函数,则实数a的取值范围是()A.(-,-33,+)B.-3,3C.(-,-3)(3,+)D.(-3,3)答案:B解析:由题意,知f(x)=-3x2+2ax-10在R上恒成立,故=(2a)2-4(-3)(-1)0,解得-3a3.5.函数f(x)=x2+x-ln x的零点的个数是()A.0B.1C.2D.3答案:A解析:由f(
3、x)=2x+1-1x=2x2+x-1x=0,得x=12或x=-1(舍去).当0x12时,f(x)12时,f(x)0,f(x)单调递增.则f(x)的最小值为f12=34+ln20,所以无零点.6.设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=-2xB.y=-xC.y=2xD.y=x答案:D解析:因为f(x)为奇函数,所以f(-x)=-f(x),即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax,解得a=1,则f(x)=x3+x.由f(x)=3x2+1,得在(0,0)处的切线斜率k=f(0)=1.故切线方程为y=
4、x.7.已知当x12,2时,a1-xx+ln x恒成立,则a的最大值为()A.0B.1C.2D.3答案:A解析:令f(x)=1-xx+lnx,则f(x)=x-1x2.当x12,1时,f(x)0.f(x)在区间12,1内单调递减,在(1,2上单调递增,在x12,2上,f(x)min=f(1)=0,a0,即a的最大值为0.8.已知函数f(x)=ln x+tan 02的导函数为f(x),若方程f(x)=f(x)的根x0小于1,则的取值范围为()A.4,2B.0,3C.6,4D.0,4答案:A解析:f(x)=lnx+tan,f(x)=1x.令f(x)=f(x),得lnx+tan=1x,即tan=1x-
5、lnx.设g(x)=1x-lnx,显然g(x)在区间(0,+)内单调递减,而当x0时,g(x)+,故要使满足f(x)=f(x)的根x0g(1)=1.又02,4,2.9.已知a=01(x2-1)dx,b=1-log23,c=cos56,则a,b,c的大小关系是()A.abcB.cabC.acbD.bca答案:B解析:a=01(x2-1)dx=13x3-x01=13-1=-23-0.667,b=1-log23=1-lg3lg2-0.58,c=cos56=-32-0.866,ca0,解得x344,令f(x)344,故f(x)在区间0,344内递增,在区间344,+内递减,故f(x)的最大值是f344
6、,a=344.11.(2021全国,理10)设a0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则()A.abC.aba2答案:D解析:因为f(x)=a(x-a)2(x-b),所以f(x)=2a(x-a)(x-b)+a(x-a)2=a(x-a)(2x-2b)+(x-a)=a(x-a)3x-(a+2b)=3a(x-a)x-a+2b3.由f(x)=0,解得x=a或x=a+2b3.若a0,则由x=a为函数f(x)的极大值点,可得a+2b3a,化简得ba.此时在区间-,a+2b3和(a,+)内,f(x)0,函数f(x)单调递增.此时a(a-b)0,即a20,则由x=a为函数的极大值点可
7、得aa+2b3,化简得a0,函数f(x)单调递增;在区间a,a+2b3内,f(x)0,函数f(x)单调递减.此时a(a-b)0,即a2ab.综上可得a20,且t1),则a=1(2e-t)lnt,1a=(2e-t)lnt.令f(t)=(2e-t)lnt,f(t)0,则f(t)=2et-(1+lnt).令2et=1+lnt,得t=e.由数形结合可知,当te时,f(t)0;当0t0.所以f(t)e,且f(t)0,所以01ae或1a0,解得a0或a1e.二、填空题(本大题共4小题,每小题5分,共20分)13.函数y=x-x2的图象与x轴所围成的封闭图形的面积等于.答案:16解析:由x-x2=0,得x=
8、0或x=1.因此,所围成的封闭图形的面积为01(x-x2)dx=x22-x3301=12-13=16.14.已知函数f(x)=ax3+3x2-x+1在区间(-,+)内是减函数,则实数a的取值范围是.答案:(-,-3解析:由题意可知f(x)=3ax2+6x-10在R上恒成立,则a0,=62+43a0,解得a-3.15.函数f(x)=e|x-1|,函数g(x)=ln x-x+a,若x1,x2使得f(x1)g(x2)成立,则a的取值范围是.答案:(2,+)解析:由题意,若x1,x2使得f(x1)g(x2)成立,可转化为f(x)min0),当x(0,1)时,g(x)0,则函数g(x)单调递增;当x(1
9、,+)时,g(x)1,解得a2,即实数a的取值范围是(2,+).16.已知函数f(x)=xln x+12x2,x0是函数f(x)的极值点,给出以下几个结论:0x01e;f(x0)+x00.其中正确的是.(填出所有正确结论的序号)答案:解析:由已知得f(x)=lnx+x+1(x0),不妨令g(x)=lnx+x+1(x0),由g(x)=1x+1,当x(0,+)时,有g(x)0总成立,所以g(x)在区间(0,+)内单调递增,且g1e=1e0,又x0是函数f(x)的极值点,所以f(x0)=g(x0)=0,即g1eg(x0),所以0x01e,即命题成立,则命题错;因为lnx0+x0+1=0,所以f(x0
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
《高频语法 名师导学》2015高考(一轮巩固)英语(译林版)高频语法复习:一 冠词(共37张PPT).ppt
