分享
分享赚钱 收藏 举报 版权申诉 / 9

类型2022年高考数学一轮复习 考点规范练46 双曲线(含解析)新人教A版.docx

  • 上传人:a****
  • 文档编号:517573
  • 上传时间:2025-12-09
  • 格式:DOCX
  • 页数:9
  • 大小:60.68KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年高考数学一轮复习 考点规范练46 双曲线含解析新人教A版 2022 年高 数学 一轮 复习 考点 规范 46 双曲线 解析 新人
    资源描述:

    1、考点规范练46双曲线基础巩固1.若a1,则双曲线x2a2-y2=1的离心率的取值范围是()A.(2,+)B.(2,2)C.(1,2)D.(1,2)答案:C解析:由题意得e2=c2a2=a2+1a2=1+1a2.因为a1,所以11+1a22.所以1e2.故选C.2.当双曲线M:x2m2-y22m+6=1(-2m0)的一条渐近线与直线y=13x垂直,则此双曲线的实轴长为()A.2B.4C.18D.36答案:C解析:双曲线的一条渐近线的方程为y=-a3x,所以-a313=-1,解得a=9,所以双曲线的实轴长为2a=18.故选C.4.设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a0,

    2、b0)的两条渐近线分别交于D,E两点.若ODE的面积为8,则C的焦距的最小值为()A.4B.8C.16D.32答案:B解析:由题意可知,双曲线的渐近线方程为y=bax.因为直线x=a与双曲线的渐近线分别交于D,E两点,所以不妨令D(a,-b),E(a,b),所以|DE|=2b.所以SODE=122ba=ab=8.所以c2=a2+b22ab=16,当且仅当a=b=22时取等号.所以c4,所以2c8.所以双曲线C的焦距的最小值为8.故选B.5.设F1,F2分别为双曲线x2a2-y2b2=1(a0,b0)的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心

    3、率为()A.2B.15C.4D.17答案:D解析:由双曲线的定义知,(|PF1|-|PF2|)2=4a2,所以4a2=b2-3ab,即b2a2-3ba=4,解得ba=4ba=-1舍去.因为双曲线的离心率e=ca=1+b2a2,所以e=17.故选D.6.已知双曲线x2a2-y2b2=1的一个焦点为F(2,0),且双曲线与圆(x-2)2+y2=1相切,则双曲线的离心率为()A.32B.2C.3D.4答案:B解析:因为双曲线x2a2-y2b2=1的一个焦点为F(2,0),所以c=2,因为双曲线与圆(x-2)2+y2=1相切,所以圆心为F(2,0),半径r=1.所以c-a=1,即a=1,所以双曲线的离

    4、心率e=ca=2.7.(2021全国,文14)双曲线x24-y25=1的右焦点到直线x+2y-8=0的距离为.答案:5解析:由双曲线方程可得c=4+5=3,即双曲线的右焦点为F(3,0).则点F到直线x+2y-8=0的距离d=|3+20-8|12+22=5.8.双曲线C:x24-y2=1的左、右焦点分别为F1,F2,过F1的直线交双曲线左支于A,B两点,则|AF2|+|BF2|的最小值为.答案:9解析:由双曲线的定义,得|AF2|+|BF2|=|AF1|+2a+|BF1|+2a=|AB|+4a2b2a+4a=212+8=9.9.设A,B分别为双曲线x2a2-y2b2=1(a0,b0)的左、右顶

    5、点,双曲线的实轴长为43,焦点到渐近线的距离为3.(1)求双曲线的方程;(2)已知直线y=33x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使OM+ON=tOD,求t的值及点D的坐标.解:(1)由题意知a=23,故可得一条渐近线方程为y=b23x,即bx-23y=0,所以|bc|b2+12=3.所以b2=3,所以双曲线的方程为x212-y23=1.(2)设M(x1,y1),N(x2,y2),D(x0,y0),则x1+x2=tx0,y1+y2=ty0.将直线方程代入双曲线方程得x2-163x+84=0,则x1+x2=163,y1+y2=12.故x0y0=433,x0212-y0

    6、23=1,解得x0=43,y0=3.由OM+ON=tOD,得(163,12)=(43t,3t),故t=4,点D的坐标为(43,3).10.已知点M(-2,0),N(2,0),动点P满足条件|PM|-|PN|=22,记动点P的轨迹为W.(1)求W的方程;(2)若A和B是W上的不同两点,O是坐标原点,求OAOB的最小值.解:(1)由|PM|-|PN|=22知动点P的轨迹是以M,N为焦点的双曲线的右支,实半轴长a=2.又焦距2c=4,所以虚半轴长b=c2-a2=2.所以W的方程为x22-y22=1(x2).(2)设A,B的坐标分别为(x1,y1),(x2,y2).当ABx轴时,x1=x2,y1=-y

    7、2,从而OAOB=x1x2+y1y2=x12-y12=2.当AB与x轴不垂直时,设直线AB的方程为y=kx+m(k1),与W的方程联立,消去y得(1-k2)x2-2kmx-m2-2=0,则x1+x2=2km1-k2,x1x2=m2+2k2-1,所以OAOB=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)(m2+2)k2-1+2k2m21-k2+m2=2k2+2k2-1=2+4k2-1.又因为x1x20,所以k2-10.所以OAOB2.综上所述,当ABx轴时,OAOB取得最小值2.能力提升11.已知双曲线x2a2-y2b2

    8、=1(a0,b0)的右焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.x24-y212=1B.x212-y24=1C.x23-y2=1D.x2-y23=1答案:D解析:双曲线x2a2-y2b2=1(a0,b0)的右焦点为F(c,0),点A在双曲线的渐近线上,且OAF是边长为2的等边三角形,不妨设点A在渐近线y=bax上,c=2,ba=tan60,a2+b2=c2,解得a=1,b=3.双曲线的方程为x2-y23=1.故选D.12.设F为双曲线C:x2a2-y2b2=1(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于

    9、P,Q两点.若|PQ|=|OF|,则C的离心率为()A.2B.3C.2D.5答案:A解析:如图,设PQ与x轴交于点A,由对称性可知PQx轴.|PQ|=|OF|=c,|PA|=c2.PA为以OF为直径的圆的半径,A为圆心,|OA|=c2.Pc2,c2.又点P在圆x2+y2=a2上,c24+c24=a2,即c22=a2,e2=c2a2=2,e=2,故选A.13.已知点O(0,0),A(-2,0),B(2,0).设点P满足|PA|-|PB|=2,且P为函数y=34-x2图象上的点,则|OP|=()A.222B.4105C.7D.10答案:D解析:由条件可知点P在以A,B为焦点的双曲线的右支上,并且c

    10、=2,a=1,所以b2=3,双曲线方程为x2-y23=1(x0).又点P为函数y=34-x2图象上的点,联立方程x2-y23=1(x0),y=34-x2,解得x2=134,y2=274.所以|OP|=x2+y2=10.故选D.14.已知双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为.答案:53解析:由定义,知|PF1|-|PF2|=2a.又|PF1|=4|PF2|,|PF1|=83a,|PF2|=23a.在PF1F2中,由余弦定理,得cosF1PF2=649a2+49a2-4c2283a2

    11、3a=178-98e2.要求e的最大值,即求cosF1PF2的最小值,当cosF1PF2=-1时,得e=53,即e的最大值为53.15.已知双曲线C:x2-y2=1及直线l:y=kx-1.(1)若l与C有两个不同的交点,求实数k的取值范围;(2)若l与C交于A,B两点,O是坐标原点,且AOB的面积为2,求实数k的值.解:(1)双曲线C与直线l有两个不同的交点,则方程组x2-y2=1,y=kx-1有两个不同的实数根,整理得(1-k2)x2+2kx-2=0.故1-k20,=4k2+8(1-k2)0,解得-2k|x2|时,SOAB=SOAD-SOBD=12(|x1|-|x2|)=12|x1-x2|;

    12、当A,B在双曲线的两支上,且x1x2时,SOAB=SODA+SOBD=12(|x1|+|x2|)=12|x1-x2|.故SOAB=12|x1-x2|=2,即(x1-x2)2=(22)2,即-2k1-k22+81-k2=8,解得k=0或k=62.又-2k0,b0),则8a2-4b2=1,且a=2,解得b=2.则双曲线的标准方程为x24-y24=1.(2)由(1)知双曲线的左、右焦点分别为F1(-22,0),F2(22,0).若F1PF2是直角,则设P(x,y),则有x2+y2=8.由x2+y2=8,x2-y2=4,解得x2=6,y2=2.由x2+y2=8,x2+(y2)2=8,解得y=1,不满足题意,舍去.故在曲线上所求点P的坐标为(6,2),(-6,2),(-6,-2),(6,-2).高考预测17.已知双曲线x2a2-y2b2=1的左焦点为F,右顶点为A,虚轴的一个端点为B,若ABF为等腰三角形,则该双曲线的离心率为()A.1+3B.5C.3D.2答案:A解析:由题意得F(-c,0),A(a,0),不妨设B(0,b),则|BF|=b2+c2c,|AF|=a+cc,|AB|=a2+b2=c,因为ABF为等腰三角形,所以只能是|AF|=|BF|,a+c=c2+b2.a2+c2+2ac=c2+c2-a2.c2-2a2-2ac=0,即e2-2e-2=0,e=1+3(舍去负值),选A.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年高考数学一轮复习 考点规范练46 双曲线(含解析)新人教A版.docx
    链接地址:https://www.ketangku.com/wenku/file-517573.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1