巧用导数法妙解高考函数题(数学).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 法妙解 高考 函数 数学
- 资源描述:
-
1、巧用导数法,妙解高考函数题四川省阆中市水观中学 李葆春 637423新编高中数学教材(试验修订本)在选修(I)、选修(II)中均增加了导数的内容。这一内容的增加。为研究有关函数的问题开辟了一条新的途径。从近几年全国高考新课程卷的命题来看,利用导数求函数的单调区间、极大(小)值,求函数在闭区间上的最大(小)值或利用导数解决一些实际应用题等已成为高考命题的一个新的热点。以下拟从几方面举例说明导数法在解函数问题中的应用。一. 求函数的解析式 例1. 设为三次函数,且图象关于原点对称,当时,的极小值为,求函数的解析式。解:设,因为其图象关于原点对称,即,得由,依题意,解之,得故所求函数的解析式为二.
2、求函数的单调区间 例(06年重庆高考)已知函数f(x)=(x2+bx+c)cx,其中b,cR为常数.()若b24(a-1),讨论函数f(x)的单调性;()若b24(c-1),且=4,试证:6b2.解:()求导得f2(x)=x2+(b+2)x+b+cex.因b24(c-1),故方程f2(x)=0即x2+(b+2)x+b+c=0有两根;x1=x2=令f(x)0,解得xx1或xx1;又令f(x)0,解得x1xx2.故当x(-, x1)时,f(x)是增函数,当 x(x2,+)时,f(x)也是增函数,但当x(x1 , x2)时,f(x)是减函数.()易知f(0)=c,f(u)=b+c,因此.所以,由已知
3、条件得 b+e=4 b24(e-1),因此b2+4b-120.解得-6b2.(06年湖北卷)设是函数的一个极值点。()、求与的关系式(用表示),并求的单调区间;()、设,。若存在使得成立,求的取值范围。三. 求函数的极值 例(06年安徽卷)已知函数在R上有定义,对任何实数和任何实数,都有()证明;()证明 其中和均为常数;()当()中的时,设,讨论在内的单调性并求极值。证明()令,则,。()令,则。假设时,则,而,即成立。令,假设时,则,而,即成立。成立。()当时,令,得;当时,是单调递减函数;当时,是单调递增函数;所以当时,函数在内取得极小值,极小值为四. 求函数的最值 例5. 求函数的最大
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
