数学人教A版必修4教学设计:3.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 学人 必修 教学 设计
- 资源描述:
-
1、教学设计32 简单的三角恒等变换作者:房增凤教学分析本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一而对于三角变换,不仅要考虑三角函数
2、式结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点三维目标1通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力2理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用3通过例题的解答,引导学生对变换对象进行对比、分析,促使学生形
3、成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练2三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力课时安排2课时第1课时导入新课思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换前面已经利用诱
4、导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换思路2.三角函数的化简、求值、证明,都离不开三角恒等变换学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点推进新课与有什
5、么关系?如何建立cos与sin2之间的关系?sin2,cos2,tan2这三个式子有什么共同特点?通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗?证明(1)sincossin()sin();(2)sinsin2sincos.并观察这两个式子的左右两边在结构形式上有何不同?活动:教师引导学生联想关于余弦的二倍角公式cos12sin2,将公式中的用代替,解出sin2即可教师对学生的讨论进行提问,学生可以发现:是的二倍角在倍角公式cos212sin2中,以代替2,以代替,即得cos12sin2,所以sin2. 在倍角公式cos22cos21中,以代替2,以代替,即得cos2cos21,
6、所以cos2. 将两个等式的左右两边分别相除,即得tan2. 教师引导学生观察上面的式,可让学生总结出下列特点:(1)用单角的三角函数表示它们的一半即是半角的三角函数;(2)由左式的“二次式”转化为右式的“一次式”(即用此式可达到“降次”的目的)教师与学生一起总结出这样的特点,并告诉学生这些特点在三角恒等变形中将经常用到提醒学生在以后的学习中引起注意同时还要强调,本例的结果还可表示为:sin,cos,tan,并称之为半角公式(不要求记忆),符号由所在象限决定教师引导学生通过这两种变换共同讨论归纳得出:对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还有所包含的角,以及这些角的
7、三角函数种类方面的差异因此,三角恒等变换常常先寻找式子所包含的各个角间的联系,并以此为依据,选择可以联系它们的适当公式,这是三角恒等变换的重要特点代数式变换往往着眼于式子结构形式的变换对于问题:(1)如果从右边出发,仅利用和(差)的正弦公式作展开合并,就会得出左式但为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含sincos呢?想到sin()sincoscossin.从方程角度看这个等式,sincos,cossin分别看成两个未知数二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含sincos的公式,列出sin()si
8、ncoscossin后,解相应的以sincos,cossin为未知数的二元一次方程组,就容易得到所需要的结果(2)由(1)得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与(1)没有什么区别只需做个变换,令,则,代入(1)中的式子即得(2)中的式子证明:(1)因为sin()sincoscossin,sin()sincoscossin,将以上两式的左右两边分别相加,得sin()sin()2sincos,即sincossin()sin()(2)由(1),可得sin()sin()2sincos. 设,那么,.把,的值代入,即得sinsin2sincos.教师
9、给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中用到了换元的思想,如把看作,看作,从而把包含,的三角函数式变换成,的三角函数式另外,把sincos看作x,cossin看作y,把等式看作x,y的方程,通过解方程求得x,这就是方程思想的体现讨论结果:是的二倍角sin2.略(见活动)思路1例1化简.活动:此题考查公式的应用,利用倍角公式进行化简解题教师提醒学生注意半角公式和倍角公式的区别,它们的功能各异,本质相同,具有对立统一的关系解:原式tan.点评:本题是对基本知识的考查,重在让学生理解倍角公式与半角公式的内在联系.变式训练化简sin50(1tan10)解:原式sin
10、50(1)sin502sin502cos401.例2已知sinxcosx,求sin3xcos3x的值活动:教师引导学生利用立方差公式对原式变换化简,然后再求解由于(ab)3a33a2b3ab2b3a3b33ab(ab),a3b3(ab)33ab(ab)解完此题后,教师引导学生深挖本例的思想方法,由sinxcosx与sinxcosx之间的转化,提升学生的运算、化简能力及整体代换思想本题也可直接应用上述公式求之,即sin3xcos3x(sinxcosx)33sinxcosx(sinxcosx).此方法往往适用于sin3xcos3x的化简问题之中解:由sinxcosx,得(sinxcosx)2,即1
11、2sinxcosx,sinxcosx.sin3xcos3x(sinxcosx)(sin2xsinxcosxcos2x)(1).点评:本题考查的是公式的变形、化简、求值,注意公式的灵活运用和化简的方法.变式训练已知sincos,且,则cos2的值是_答案:例3已知1,求证:1.活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A,B的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A,B角的正、余弦,可利用平方关系来减少函数的种类从结构上看,已知条件是a2b21的形式,可利用三角代换证明一:1,cos4Asin2Bsin4Acos2Bsin2Bcos2B.
12、cos4A(1cos2B)sin4Acos2B(1cos2B)cos2B,即cos4Acos2B(cos4Asin4A)cos2Bcos4B.cos4A2cos2Acos2Bcos4B0.(cos2Acos2B)20.cos2Acos2B.sin2Asin2B.cos2Bsin2B1.证明二:令cos,sin,则cos2AcosBcos,sin2AsinBsin.两式相加,得1cosBcossinBsin,即cos(B)1.B2k(kZ),即B2k(kZ)coscosB,sinsinB.cos2AcosBcoscos2B,sin2AsinBsinsin2B.cos2Bsin2B1.点评:要善于
13、从不同的角度来观察问题,本例从角与函数的种类两方面观察,利用平方关系进行了合理消元.变式训练在锐角三角形ABC中,A、B、C是它的三个内角,记S,求证:S90,90A90B0.tanAtan(90B)cotB0,tanAtanB1.S0.tan(2)0.又(0,),20,得02.由tantan(2),得2,即2.例2求证:1.活动:证明三角恒等式,一般要遵循“由繁到简”的原则,另外“化弦为切”与“化切为弦”也是在三角式的变换中经常使用的方法证明:证法一:左边11右边原式成立证法二:右边1左边原式成立点评:此题进一步训练学生三角恒等式的变形,灵活运用三角函数公式的能力以及逻辑推理能力.变式训练求
14、证:.分析:运用比例的基本性质,可以发现原式等价于,此式右边就是tan2.证明:原等式等价于tan2.而上式左边tan2右边上式成立,即原等式得证.1若sin,在第二象限,则tan的值为( )A5 B5C. D答案:A2设56,cosa,则sin等于( )A. B.C D答案:D3已知sin,3,则tan_.答案:31先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明2教师画龙点睛总结:本节学习了公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段课本习题3.2
15、B组2.1本节主要学习了怎样推导半角公式、积化和差、和差化积公式以及如何利用已有的公式进行简单的恒等变换在解题过程中,应注意对三角式的结构进行分析,根据结构特点选择合适公式,进行公式变形还要思考一题多解、一题多变,并体会其中的一些数学思想,如换元、方程思想,“1”的代换,逆用公式等2在近几年的高考中,对三角变换的考查仍以基本公式的应用为主,突出对求值的考查特别是对平方关系及和角公式的考查应引起重视,其中遇到对符号的判断是经常出问题的地方,同时要注意结合诱导公式的应用,应用诱导公式时符号问题也是常出错的地方考试大纲对本部分的具体要求是:用向量的数量积推导出两角差的余弦公式,体会向量方法的作用从两
16、角差的余弦公式进而推导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系,能运用上述公式进行简单的恒等变换第2课时导入新课思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:(),2()()()(),()等,你能总结出三角变换的哪些策略?由此探讨展开思路2.(复习导入)前面已经学过如何把形如yasinxbcosx的函数转化为形如yAsin(x)的函数,本节主要研究函数yasinxbcosx的周期、最值等性质三角函数和代数、几何知识联系
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
