河北省石家庄二中2019-2020学年高二数学下学期期末考试试题(含解析).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 石家庄 2019 2020 学年 数学 学期 期末考试 试题 解析
- 资源描述:
-
1、河北省石家庄二中2019-2020学年高二数学下学期期末考试试题(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,则( )A. B. C. D. 或【答案】D【解析】【分析】化简集合,再求,得到答案.【详解】由题,或,则或.故选:D.【点睛】本题考查了不等式的解法,集合的交集运算,属于基础题.2.若复数,则( )A. B. C. D. 【答案】A【解析】【分析】利用复数的除法法则将复数化为一般形式,可得出复数的一般形式,进而可利用复数的模长公式可求得.【详解】,则,因此,.故选:A.【点睛】本题考查复数模长的计算,同时
2、也考查了复数的四则运算,考查计算能力,属于基础题.3.下列各组函数中表示的函数不同的是( )A. ,B. ,C. ,D. ,【答案】D【解析】【分析】分析各选项中函数和的定义域和解析式的异同,可得出结论.【详解】对于A选项,函数的定义域为,函数的定义域为,且,A选项中的两个函数是同一个函数;对于B选项,函数的定义域为,函数的定义域为,且,B选项中的两个函数是同一个函数;对于C选项,函数定义域为,函数的定义域为,两个函数对应法则相同,C选项中的两个函数是同一个函数;对于D选项,函数的定义域为,函数的定义域为,两个函数的定义域不相同,D选项中的两个函数不是同一函数.故选:D.【点睛】本题考查函数相
3、等的判断,一般要分析两个函数的定义域和解析式的异同,考查推理能力,属于基础题.4.若,则( )A. B. C. D. 【答案】C【解析】【分析】利用诱导公式以及二倍角余弦公式可求得所求代数式的值.【详解】.故选:C.【点睛】本题考查利用二倍角的余弦公式以及诱导公式求值,考查计算能力,属于基础题.5.若函数是上的奇函数,则实数的值可以为( )A. B. C. D. 【答案】A【解析】【分析】根据函数是上的奇函数可得出的表达式,利用赋值法可得出结果.【详解】由于函数是上的奇函数,则,当时,.故选:A.【点睛】本题考查利用余弦型函数的奇偶性求参数,考查计算能力,属于基础题.6.函数的部分图象大致为(
4、 )A. B. C. D. 【答案】A【解析】【分析】先判断函数的奇偶性,再根据特殊函数值即可求出【详解】因为,所以,即为偶函数,排除B,D.取,排除C.故选A.【点睛】本题考查了函数图象的识别,掌握函数的奇偶性,以及函数值的变化情况是关键,属于基础题.7.“”是“函数在上有极值”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】求出函数的极值点,利用该极值点在内求得实数取值范围,利用集合的包含关系可得出结论.【详解】,则,令,可得.当时,;当时,.所以,函数在处取得极小值.若函数在上有极值,则,.因此,“”是“函数在上有极值”的
5、充分不必要条件.故选:A.【点睛】本题考查充分不必要条件的判断,同时也考查了利用导数求函数的极值点,考查计算能力与推理能力,属于中等题.8.函数在上是减函数,那么的值可以是( )A. B. 2C. 3D. 4【答案】A【解析】【分析】根据函数在为减函数可以得到半周期满足的不等式,从而可以得到的取值范围,故可得正确的选项.【详解】由题意可知函数的最小正周期,故,所以,即.故选:A【点睛】本题考查三角函数的图像和性质,属于基础题9.若函数的值域为,则a的取值范围为( )A. B. C. D. 【答案】B【解析】【分析】分别求出当,对应的值域,再由题意解不等式组,即可得出答案.【详解】当时,当时,函
6、数的值域为,即故选:B【点睛】本题主要考查了由分段函数的值域求参数的范围,属于中档题.10.已知函数 ,则的零点个数为( )A. 3B. 4C. 5D. 6【答案】C【解析】【分析】由题意,函数的零点个数,即方程的实数根个数,设,则,作出的图象,结合图象可知,方程有三个实根,进而可得答案.【详解】由题意,函数的零点个数,即方程的实数根个数,设,则,作出的图象,如图所示,结合图象可知,方程有三个实根,则 有一个解,有一个解,有三个解,故方程有5个解.【点睛】本题主要考查了函数与方程综合应用,其中解答中合理利用换元法,结合图象,求得方程的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和
7、解答问题的能力,以及数形结合思想的应用.11.在中,角、所对的边分别是、.已知,且满足,则的取值范围为( )A. B. C. D. 【答案】D【解析】【分析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,所以,则,由余弦定理得,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.12.设函数,对任意正实数x,恒成立,则m的取值范围为( )A. B. C. D.
8、【答案】D【解析】【分析】恒成立, 令,利用导数研究函数的性质,作出的图象,考虑曲线与直线相切的情况,得到答案.【详解】等价于 令, 则 令 ,可得 则在递增,递减,递增,作出,示意图如图所示:满足题意时, 的图象在直线 的上方. 设曲线与直线 相切, 切点坐标为 则 ,结合际数图象可得.故选:D【点睛】本题考查了利用导数研究函数的图象和性质,曲线的切线问题,还考查了转化思想,数形结合思想,运算能力,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.已知,则等于_.【答案】【解析】【分析】利用两角差的正切公式可求得的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
安徽省2024七年级英语下册 Unit 1 Dream Homes写作能力提升练课件牛津译林版.ppt
