分享
分享赚钱 收藏 举报 版权申诉 / 8

类型数学教学中培养学生创新能力的探索.doc

  • 上传人:a****
  • 文档编号:534710
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:8
  • 大小:19.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学 教学 培养 学生 创新 能力 探索
    资源描述:

    1、数学教学中培养学生创新能力的探索素质教育要求我们充分尊重学生的主体性,注重开发学生的潜能,对于数学这门学科来说,其中创新能力是素质教育的核心,关键是培养学生的创造性思维能力,培养学生的创造性思维能力,这是培养新世纪新型建设人才的时代要求,也是教学的重任。我长期从事小学数学的教学工作,在教学的实践中,我从以下几方面抓了学生创新能力的培养。一、通过一题多解,培养学生的创新能力;在教学中,通过多角度思考,获得多种解题途径,可拓宽学生的思路,使学生感受到数学的奥秘和情趣,培养学生的创新意识。例1、某水泥厂去年生产水泥32400吨,今年前五个月的产量就等于去年全年的产量,照这样计算,这个水泥厂今年将比去

    2、年增产百分之几?(九年义务教育六年制小学数学第十二册)解法一,预计今年的水泥产量为:32400÷5×12=77760,今年可比去年增产:(7776032400)÷32400140%。解法二,设去年的每月的水泥产量为“1”,则去年的水泥总产量为12,今年前5个月的水泥产量即达12,今年全年的水泥产量应为:12/5×12,因此今年的水泥产量将比去年增加:(12/5×1212)÷12140%。或12/5×12÷121140%。解法三:同上,去年水泥总产量为12,今年前5个月的水泥产量即达12,生产

    3、同去年同样多的水泥,今年可比去年少用7(125)个月,如这7个月继续生产,则可比去年多增加水泥产量7,因此可得,今年的水泥产量将比去年增加:7÷5140%。解法四:设今年每个月的水泥产量为“1”,则今年的水泥总产量为12,因为今年5个月的水泥产量就同去年相等,因此去年的水泥总产量则为5,因此可得,今年的水泥产量将比去年增加:(125)÷5140%。解法五:设去年的水泥总产量为“1”,则去年每月的水泥产量则为1/12,今年每月的每月的水泥产量则为1/5,今年与去年每月的水泥产量比则为:1/51/12,因为时间相同,因此可得,今年与去年的水泥总产量的比也为1/51/12

    4、,因此可得,今年的水泥产量将比去年增加:(1/51/12)÷1/12140%。例如在学习了百分数应用题后,我出示了这样一题:“某校女生人数比男生人数少20%,问男生比女生多百分之几?”,并要求学生用不同的方法进行求解。学生在我的点拨和指导下,经过讨论,很快列出了不同的算式:(1)、因为男生人数为单位“1”,因此女生人数为:120%80%,因此男生比女生人数多:(180%)÷80%25%。(2)、同上,女生人数是男生人数的:120%80%,又因为女生人数比男生人数少20%,因此可得,男生比女生人多:20%÷80%25%。(3)、同上,因为女生人数是男生人

    5、数的80%4/5,即女生人数与男生人数的比是45,因此可得,因此男生比女生人数多:(54)÷425%。通过一题多解不仅能拓宽学生的思维领域,增加学生的思维空间,同时通过总结,可揭示一些有规律性的东西,达到增长学生智能的目的。二、善于引导学生归纳和发现,培养学生的创新能力在数学教学中,如能引导学生进行归纳和发现,也能培养和提高学生的创新能力。如在教学完了平面图形的面积计算公式后,我要求学生归纳出一个能概括各个平面图形面积计算的公式,我让学生进行讨论,经过讨论,学生们归纳出,在小学阶段学过的面积公式都可以用梯形的面积计算公式来进行概括,因为梯形的面积计算公式是:(上底+下底)&tim

    6、es;高÷2。因为长方形、正方形、平行四边形的上底和下底相等,即可将这公式变成:底(长、边长)×高(宽、边长)×2÷2=底(长、边长)×高(宽、边长);又因为将圆面积公式是根据长方形的面积公式推导出来的,因此,梯形的面积公式对圆也同样适用;当梯形的上底是零时,即梯形成了一个三角形,这时梯形的面积公式成了:底×高÷2。这即成了三角形的面积公式。这样,不仅使学生能熟练掌握已学过的平面图形的面积公式,同时,也培养和提高了学生的创新能力。又如在教学了圆柱体的表面积公式后,学生掌握了圆柱体的表面积是侧面积加上两个底

    7、面积,我启发学生能否将圆面积的推导公式和圆柱体的侧面积推导公式的过程进行联想和联系,概括出求圆柱体表面积的公式。学生经过讨论并用学具操作,很快想出,因为将一个圆平均分成若干份,拼成一个近似长方形,这近似长方形的长即是圆柱体的底面周长,宽即是圆柱体的底面圆的半径,因此,圆柱体的表面积公式即可为:S2πΥ×(ΥH)。三、善于联想和比较,培养学生在联想和比较中创新在教学实践中,如让学生能针对某一问题,通过类比思维去解决,不仅能提高教学效果,还能培养学生的创新思维能力。例如在教学了比的知识后,我出示了这样一句数量关系句:“某工厂男工人的人数比女工人的人

    8、数多1/4”,我要求学生根据这一句数量关系句进行联想,改变成内容不变但叙述方法不同的数量关系句,学生经过讨论,即很快能说出:(1)、男工人的人数是女工人的人数的11/45/4;(2)、某工厂男工人的人数与女工人的人数的比是54;(3)、某工厂女工人的人数与男工人的人数的比是45;(4)、某工厂女工人的人数是男工人的人数的4/5,(5)、某工厂男工人的人数占全厂工人的人数的5/9;(6)、某工厂女工人的人数占全厂工人的人数的4/9;(7)、某工厂女工人的人数比男工人的人数少1/5。这样学生很快能将比与分数进行融会贯通,增强了学生的创新意识。又如在教学了数的整除的知识后,我出示了这样一题:“一个数

    9、被6除余4,被8除余2,被9除余1,这个最小是几?”应该说这道题是有一定的难度的,学生求解会感到无从下手,这时,我出示了这样一题比较题:“一个数被6除余10,被8除余10,被9除余10,这个数最小是几?”这道题学生很快能求出答案:这个数即是6、8和9的最小公倍数多10,6、8和9的最小公倍数为72,因此这个数为:721082;然后我引导学生将上道题与这道比较题进行想象和比较,学生很快知道,上道题只要假设被6除少商1余数即为10,被8除少商1余数也为10、被9除时少商1余数也为10,因此可迅速求得这个数只有减去10,就同时能被6、8和9整除,而6、8和9的最小公倍数为72,因此这个数为:7210

    10、82。这样通过让学生展开联想和比较,不但可以提高学生的想象能力,也能提高学生的创新思维能力。四、通过一题的灵活多变,不断培养学生的创新素质在教学中,如果能做到引导学生对命题条件、结论进行各种变换,能充分调动学生学习的积极性。例如在学习了长方体的表面积后,我让学生归纳出了求长方体的表面积公式后,我出示长方体的实物,并演示提出如果少掉一个底面的一个面,请学生思考这时五个面的面积公式又是怎样的?如果少掉前面的一个面,这时五个面的面积公式又是怎样的?如果少掉两个底面,这时的四个面的面积公式又是怎样的?少掉了两个底面,这时实际只要求什么?那一种物体只要求出四个面?学生经过讨论,很快能说出求五个面的面积公

    11、式,并知道少掉两个底面,实际上只要求长方体的侧面积,通风管即只要求四个面。这样通过运用实物和教具,让学生在实践中通过联想,增强了学生的创新意识,培养了学生的创造性思维能力,同时也提高了学生的解题能力。再如课本上九年义务教育六年制小学数学第十二册中的的一道思考题:“修一条公路,已修和未修长度的比是13,再修300米后,已修和未修长度的比是12。这条路长多少米?”这道题有的学生求解会有一定的难度,我就先出示了这样一道题:“修一条公路,已修了全长的1/4,再修300米后,则已修了全长的1/3,这条路长多少米?”。这道题学生很快能列出算式:300÷(1/31/4)3600(米)。然后我再

    12、引导学生思考,上面一道思考题的条件是:“再修300米后,已修和未修长度的比是12”,这里隐藏着一个等量关系,如果抓住这个等量关系,就可列方程解答。设已修的长度为X米,那么未修的长度为3X米。(X300)(3X300)l2解得X900X3X900900×33600(米)答:这条路长3600米。接着,我再引导学生,又因为公路的总米数是“不变量”,把条件“已修和未修长度的比是13,再修300米后,已修和未修长度的比是12”转化为:“已修长度是未修长度的1/3,再修300米,已修长度是未修长度的1/2”,如把公路全长看作单位“1”,所以可得,已修的长度就是总长度的:1/3÷(

    13、11/3)1/4,再修300米后,已修的长度就是总长度的:1/2÷(11/2)=1/3,由此可知,300米就相当于公路全长的:(1/31/4),所以可列式为:300÷(1/31/4)3600(米)。答:这条路有3600米。在学生掌握了这道思考题的解答方法后,我又出示了这样一题:“修一条公路,已修长度是未修长度的是1/3,再修300米后,已修长度是未修长度的1/2。这条路长多少米?”。然后我组织学生讨论,学生在掌握了上道题的解题方法后,很快能求出公路的全长是:300÷1/2÷(11/2)1/3÷(11/3)3600(米)。“教

    14、书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。孟子中的“先生何为出此言也?”;论语中的“有酒食,先生馔”;国策中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实国策中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于礼记?曲礼,有“从于先

    15、生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。接着,我又出示了这样一题:“修一条公路,未修长度是已修长度的3倍,再修300米后,未修长度是已修长度的2倍。这条路长多少米?”。我再组织学生讨论,学生在解答了上面二题的基础上,也能很快求出这条公路的长度是:300÷1÷(12)1÷(13)3600(米)。死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得

    16、当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。在长期的教学实践中,我认识到,数学教师要在课堂教学中培养学生的创造力,教师首先应创设一种民主、宽松、和谐的教学环境和教学气氛。有意识的培养学生的创新意识;善于激发学生的创造动机;发展学生的创造思维;树立学生具有创造力的个性品质。同时教师还要注意自身的知识和能力储备。教师自己能够打破传统定势,提高自身的认知水平,才能更加灵活的去引导学生的发展。更好的促进学生的发展。实现教书育人的目的单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学教学中培养学生创新能力的探索.doc
    链接地址:https://www.ketangku.com/wenku/file-534710.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1