数学教学中思想方法的渗透的路径.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 教学 思想 方法 渗透 路径
- 资源描述:
-
1、数学教学中思想方法的渗透的路径数学思想方法比形式化的知识更重要,教师在教学过程中要引导学生领会和掌握隐含在课本数学内容背后的数学思想方法,使学生能够不断提高思维水平,优化思维品质,培养创新精神和实践能力,真正懂得数学价值,建立科学的数学观念,并形成良好的个性品质及科学世界观和方法论,最终促进学生整体素质提高.一、数学思想方法的基本概念思想是认识的高级阶段,是事物本质的、高级抽象的、概括的认识.数学思想是对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中所提炼上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是建立数学体系和用数学解决问题的指导思想.数学方法是以数学为工
2、具进行科学研究的过程中,所采用的各种方式、手段、途径等,数学方法就是提出、分析、处理和解决数学问题的概括性策略.数学方法的运用、实施与数学思想的概括、提炼是并行不悖的,是相互为用的,互为表里的.数学思想是数学中处理问题的基本观点,是对数学基础知识与基本方法本质的概括,是其精神实质和理论根据,是创造性地发展数学的指导方针.数学思想来源于数学基础知识与基本方法,又高于数学知识与方法,居于更高层次的地位,它指导知识与方法的运用,它能使知识向更深、更高层次发展.二、数学思想方法教学的意义1.有利于学生对数学基本概念与原理的理解数学思想方法是数学学科的“一般原理”,学生学习了数学思想方法就能够更好地理解
3、和掌握数学内容,有助于学生形成优化的、关联的、动态的数学观.学生一旦具备了数学严密的逻辑思维能力,对于所修专业基础课程必须了解掌握的基本概念及相关原理就可以更好地全面分析和理解,达到事半功倍的效果.2.有利于学生更好地将数学和实践相结合数学实践能力的培养可以在数学知识学习过程中自发形成和发展,但是有意识地将数学思想和方法渗透到职业教育中的不同思维层次,沿着学生的思维轨迹因势利导,使学生克服学习中的恐惧和盲目心理,激发学习兴趣,提高自觉性,有助于学生将所学数学知识应用于实践,提高其解决问题的能力.3.有利于学生数学创新意识的培养数学思想方法是数学知识的本质,为分析、处理和解决数学问题提供了指导方
4、针和解题策略.学生在数学教师的引导下,通过对蕴含于其中的数学思想方法有所领悟,能激发出数学潜能,积极主动地参与到教师的全程教学中,培养独立思考,独立解决问题的能力.数学是一门思维学科,数学思想方法可以极大地锻炼学生的形象思维能力和逻辑思维能力,向问题的深度和广度发展,达到对事物全面的认识,有利于学生创新意识的培养.三、数学思想方法渗透的策略1.教师需要认真备课,充分挖掘教材中的数学思想方法数学教材中的概念、定理、公式等都是以结论的形式呈现出来的,即使有推导过程,学生也是重视结果而不重视过程,有公式就可以解题.故其中蕴含的思想方法要么没有在课本中体现出来,要么很容易被学生所忽略.然而,导致结论产
5、生的思维活动、思想方法,恰恰是数学结构体系中最具价值的东西.所以,教师要刻苦钻研教材,挖掘教材中所蕴含的数学思想方法,以便在教学实践中适时渗透数学思想方法.2.将思想方法渗透于学生学习新知识过程中数学思想方法与数学知识是密切联系的统一体,没有脱离数学知识的数学思想方法,也没有不含数学思想方法的数学知识.因此,教师应在传授数学知识的同时渗透数学思想方法,这样才能使学生对所学知识有真正的理解和掌握,才能使学生真正领略到数学思想方法的真谛.数学知识的形成、发展过程,实际上也是数学思想方法的形成、发展过程.像概念的形成过程,公式、定理的推导过程,问题的发现过程,方法的思考过程,思路的探索过程,规律的揭
6、示过程等都蕴藏着丰富的数学思想方法.因此,教师在数学教学中,不要直接给出概念的定义,而要展示概念的形成过程,揭示概念的本质;对公式、定理不过早地给结论,引导学生积极参与结论的探索、发现、推理过程,从中领悟思维过程中的数学思想方法.3.将数学思想方法渗透于解题思路的探索过程中在解题过程中教师要带领学生逐步探索数学思想方法,使学生在解题过程中充分领悟数学思想方法的重要作用和指导意义.譬如说,数形结合思想是充分利用图形直观帮助学生理解题意的重要手段,它可使抽象的内容变为具体,采用画线段图的方法帮助学生分析数量关系,从而化难为易.化归思想是解题的一种基本思想,贯穿于中学数学的整个学习过程,学生一旦形成
7、了化归意识,就能化未知为已知,化繁为简,化特殊为一般,优化解题方法.还有归纳演绎方法也是解题时常用的一种数学思想方法,这些思想方法都可以在解题的探索过程中帮我们指明前进的方向.让学生提高数学的学习兴趣,提高学习成绩,最重要的是在这个过程中不断接触数学中深层次的内容,提高学生的数学素质.4.解决问题的过程中,体现数学思想方法解题教学过程中指导学生数学思想方法的运用是一个潜移默化的过程,必须通过学生自己反复体验和实践才能逐渐形成.因此教师要在解题教学过程中指导学生有意识地去运用数学思想方法解题.在学生的解题过程中,不同学生由于在学习过程中的理解能力不同,导致对各种思想方法的掌握程度会有非常大的差别
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
