2020-2021学年高一数学上学期高频考点突破 专题08 函数奇偶性(含解析)新人教A版必修第一册.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020-2021学年高一数学上学期高频考点突破 专题08 函数奇偶性含解析新人教A版必修第一册 2020 2021 学年 数学 上学 高频 考点 突破 专题 08 函数 奇偶性 解析 新人 必修
- 资源描述:
-
1、专题08 函数奇偶性模块一:函数的奇偶性及其应用函数图象的对称性轴对称中心对称函数示意图奇偶性偶函数奇函数满足的关系式本质当取的自变量互为相反数时,函数值相等当取的自变量互为相反数时,函数值也互为相反数函数奇偶性的操作:1乘以任何系数,不改变奇偶性,不管是还是;2,偶函数不变(相当于图象上下平移,不改变偶函数的对称性),奇函数不行;3则往往不再具有奇偶性(除非它本身是有周期性)4奇函数奇函数奇函数,奇函数奇函数偶函数,偶函数偶函数偶函数;5奇函数与偶函数的复合,是有偶函数则复合后为偶函数,否则为奇函数但因为奇偶性相对比较容易判断,所以以上这些结论应用较少考点1:函数的奇偶性例1.判断下列函数的
2、奇偶性:(1);(2);(3),;(4);(5);(6);(7) ;(8);(9); (10)【解答】解:(1)的定义域为,是偶函数(2)由函数有意义可得,解得:为非奇非偶函数(3)函数的定义域不关于坐标原点对称,故函数是非奇非偶函数(4)函数的定义域为,关于坐标原点对称,且:,函数是奇函数(5)既是奇函数又是偶函数;(6)是偶函数但不是奇函数;(7)奇函数但不是偶函数;(8)既不是奇函数也不是偶函数;(9)既不是奇函数也不是偶函数;(10)奇函数但不是偶函数.考点2:函数奇偶性的应用例2.(1)已知函数,且,那么(2)等于AB2CD10【解答】解:令,则是奇函数,故,(2),故(2)(2),
3、故选:(2)函数在上为奇函数,且当时,则【解答】解:函数在上为奇函数,且当时,解得:,即当时,故(4),故(4),故答案为:例3.(1)设函数是定义域为上的奇函数,当时,求时,的解析式为【解答】解:是定义域为上的奇函数,当时,则,则,故答案为:(2)已知为偶函数,则【解答】解:根据题意,设,则,则,又由为偶函数,则有,则有,则;故答案为:4例4.(1)已知是定义域为的偶函数,当时,那么,不等式的解集是【解答】解:若,则,当时,当时,是定义域为的偶函数,即当时,当时,当时,综上所述,不等式的解集为,故答案为(2)若函数为偶函数,且当时,则不等式的解集为【解答】解:当时,由得,函数为偶函数,或,即
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-580983.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
