2021-2022学年新教材高中数学 第五章 统计与概率 4 统计与概率的应用练习(含解析)新人教B版必修第二册.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022学年新教材高中数学 第五章 统计与概率 统计与概率的应用练习含解析新人教B版必修第二册 2021 2022 学年 新教材 高中数学 第五 统计 概率 应用 练习 解析 新人 必修
- 资源描述:
-
1、统计与概率的应用必备知识基础练1.一批产品的合格率为90%,检验员抽检时出错率为10%,则检验员抽取一件产品,检验为合格品的概率为()A.0.81B.0.82C.0.90D.0.91答案B解析一批产品的合格率为90%,检验员抽检时出错率为10%,检验员抽取一件产品,检验为合格品的概率是0.90.9+0.10.1=0.82.故选B.2.某高一学生为了获得某名校的荣誉毕业证书,在“体音美2+1+1项目”中学习游泳.他每次游泳测试达标的概率都为60%,现采用随机模拟的方法估计该同学三次测试恰有两次达标的概率:先由计算器产生0到9之间的整数随机数,指定1,2,3,4表示未达标,5,6,7,8,9,0表
2、示达标;再以每三个随机数为一组,代表三次测试的结果.经随机模拟产生了如下20组随机数:917966891925271932872458569683431257393027556488730113507989据此估计,该同学三次测试恰有两次达标的概率为()A.0.50B.0.40C.0.43D.0.48答案A解析因为这20个数据中符合条件的有917,891,925,872,458,683,257,027,488,730,共10个,所以所求事件的概率为=0.5,故选A.3.如图,用K,A1,A2三类不同的元件连接成一个系统.当K正常工作且A1,A2至少有一个正常工作时,系统正常工作,已知K,A1,
3、A2正常工作的概率依次是0.9,0.8,0.8,则系统正常工作的概率为()A.0.960B.0.864C.0.720D.0.576答案B解析A1,A2同时不能正常工作的概率为0.20.2=0.04,所以A1,A2至少有一个正常工作的概率为1-0.04=0.96,所以系统正常工作的概率为0.90.96=0.864.故选B.4.下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良.某人随机选择3月1日至3月14日中的某一天到达该市,并停留2天(包括到达当天).此人停留期间只有1天空气质量优良的概率为()A.B.C.D.答案D解析3月1日至3月14日中,若停留2天有
4、(1,2),(2,3),(13,14)共有13种,停留期间只有1天空气质量优良的有(3,4),(6,7),(7,8),(11,12)共4种.所以对应概率为P=.5.某班准备到郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷是等可能的,只要帐篷如期运到,他们就不会淋雨,则淋雨的概率是.答案解析由题意知,下雨的概率为,不下雨的概率为,准时收到帐篷的概率为,不能准时收到帐篷的概率为.当下雨且不能准时收到帐篷时会淋雨,所以淋雨的概率为.6.为迎接2022年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核.记X表示学生的考核成绩,并规定X85为考核
5、优秀.为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图.(1)从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;(2)从图中考核成绩满足X80,89的学生中任取2人,求至少有一人考核优秀的概率;(3)记P(aXb)表示学生的考核成绩在区间a,b的概率,根据以往培训数据,规定当P0.5时培训有效.请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由.解(1)由茎叶图中的数据可以知道,30名学生中,有7名学生考核优秀,所以估计这名学生考核优秀的概率为.(2)设从图中考核成绩满足X80,89的学生中任取2人,至少有一人
6、考核成绩优秀为事件A,因为图中成绩在80,89的6人中有2个人考核优秀,所以样本空间包含15个样本点,事件B包含9个样本点,所以P(A)=.(3)根据图中的数据知,满足1的成绩有16个,所以P0.5,所以可以认为此次冰雪培训活动有效.关键能力提升练7.(多选题)有三个游戏,规则如下,袋子中分别装有形状、大小相同的球,从袋中无放回地取球.游戏1游戏2游戏3袋中装有3个黑球和2个白球袋中装有2个黑球和2个白球袋中装有3个黑球和1个白球从袋中取出2个球从袋中取出2个球从袋中取出2个球若取出的两个球同色,则甲胜若取出的两个球同色,则甲胜若取出的两个球同色,则甲胜若取出的两个球不同色,则乙胜若取出的两个
7、球不同色,则乙胜若取出的两个球不同色,则乙胜其中不公平的游戏是()A.游戏1B.游戏2C.游戏3D.都不公平答案AB解析对于游戏1,取出两球同色的概率为,取出两球不同色的概率为,不公平;对于游戏2,取出两球同色的概率为,取出两球不同色的概率为,不公平;对于游戏3,取出两球同色即全是黑球,概率为,取出两球不同色的概率为,公平.8.春节期间“支付宝”开展了集福活动,假定每次扫福都能得到一张福卡(福卡一共有五种:爱国福、富强福、和谐福、友善福、敬业福),且得到每一种类型福卡的概率相同,若小张已经得到了富强福、和谐福、友善福,则小张再扫两次可以集齐五福的概率为,小张再扫三次才可以集齐五福的概率为.答案
8、解析(1)由题意可得小张扫第一次得到爱国福或敬业福,概率为P1=,扫第二次得到另外一张福卡的概率P2=,则小张再扫两次可以集齐五福的概率为P=P1P2=.(2)由题意可得小张扫三次,前两次只得爱国福与敬业福中的一个的概率为P3=,第三次得另一张卡片的概率为P2=,则小张再扫三次才可以集齐五福的概率为P=P3P4=.9.交强险是车主为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,且保费与上一年车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:交强险浮动因素和费率浮动比率表浮动因素
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-597418.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2018年秋黄冈人教版九年级语文上册习题课件:期末检测卷A (共33张PPT).ppt
