2021年中考数学核心考点强化突破 函数与几何综合运用(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年中考数学核心考点强化突破 函数与几何综合运用含解析 2021 年中 数学 核心 考点 强化 突破 函数 几何 综合 运用 解析
- 资源描述:
-
1、2021年中考数学核心考点强化突破:函数与几何综合运用 类型1存在性问题存在性问题一般有以下题型:是否存在垂直、平行位置关系;等腰、直角三角形、(特殊)平行四边形形状关系;最大、最小值数量关系等1如图,已知二次函数y1x2xc的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2kxb.(1)求二次函数的解析式及点B的坐标;(2)由图象写出满足y1y2的自变量x的取值范围;(3)在两坐标轴上是否存在点P,使得ABP是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,说明理由解:(1)将A(4,0)代入y1x2xc,得424c0,解得c3.所求二次函数的解析式为y
2、1x2x3.当x0时,y13,点B的坐标为(0,3)(2)满足y1y2的自变量x的取值范围是:x0或x4.(3)存在,理由如下:作线段AB的中垂线l,垂足为C,交x轴于点P1,交y轴于点P2.A(4,0),B(0,3),OA4,OB3.在RtAOB中,AB5.ACBC.RtACP1与RtAOB有公共OAB,RtACP1RtAOB.,即,解得AP1.而OP1OAAP14,点P1的坐标为(,0)又RtP2CB与RtAOB有公共OBA,RtP2CBRtAOB.,即,解得P2B.而OP2P2BOB3,点P2的坐标为(0,)所求点P的坐标为(,0)或(0,)2如图,抛物线yax2bx3经过点A(2,3)
3、,与x轴负半轴交于点B,与y轴交于点C,且OC3OB.(1)求抛物线的解析式;(2)点D在y轴上,且BDOBAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由解:(1)由yax2bx3得C(0.3),OC3,OC3OB,OB1,B(1,0),把A(2,3),B(1,0)代入yax2bx3得,抛物线的解析式为yx22x3;(2)设连接AC,作BFAC交AC的延长线于F,A(2,3),C(0,3),AFx轴,F(1,3),BF3,AF3,BAC45,设D(0,m),则OD
4、|m|,BDOBAC,BDO45,ODOB1,|m|1,m1,D1(0,1),D2(0,1);(3)设M(a,a22a3),N(1,n),以AB为边,则ABMN,ABMN,如图2,过M作ME对称轴于E,AFx轴于F,则ABFNME,NEAF3,MEBF3,|a1|3,a4或a2,M(4,5)或(2,5);以AB为对角线,BNAM,BNAM,如图3,则N在x轴上,M与C重合,M(0,3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(2,5)或(0,3)类型2几何最值、定值问题3如图,在平面直角坐标系中,平行四边形ABOC如图放置,将此平行四边形绕点O顺时针旋转90
5、得到平行四边形ABOC.抛物线yx22x3经过点A、C、A三点(1)求A、A、C三点的坐标;(2)求平行四边形ABOC和平行四边形ABOC重叠部分的面积;(3)点M是第一象限内抛物线上的一动点,问点M在何处时,AMA的面积最大?最大面积是多少?并写出此时M的坐标解:(1)当y0时,x22x30,解得x13,x21,C(1,0),A(3,0)当x0时,y3,A(0,3)(2)设AC与OB相交于点D.C(1,0),A(0,3),B(1,3)OB.SBOA13.又平行四边形ABOC旋转90得到平行四边形ABOC,ACOOCD.又ACOABO,ABOOCD.又CODAOB,CODBOA.()2()2.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
