2021高考数学(理)导学大一轮人教A广西专用高考大题专项练一 高考中的函数与导数 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学理导学大一轮人教A广西专用高考大题专项练一高考中的函数与导数 WORD版含解析 2021 高考 数学 导学大 一轮 广西 专用 专项 中的 函数 导数 WORD 解析
- 资源描述:
-
1、高考大题专项练一高考中的函数与导数高考大题专项练第2页1.(2019北京,理19)已知函数f(x)=14x3-x2+x.(1)求曲线y=f(x)的斜率为1的切线方程;(2)当x-2,4时,求证:x-6f(x)x;(3)设F(x)=|f(x)-(x+a)|(aR),记F(x)在区间-2,4上的最大值为M(a).当M(a)最小时,求a的值.(1)解由f(x)=14x3-x2+x得f(x)=34x2-2x+1.令f(x)=1,即34x2-2x+1=1,得x=0或x=83.又f(0)=0,f83=827,所以曲线y=f(x)的斜率为1的切线方程是y=x与y-827=x-83,即y=x与y=x-6427
2、.(2)证明令g(x)=f(x)-x,x-2,4.由g(x)=14x3-x2得g(x)=34x2-2x.令g(x)=0得x=0或x=83.g(x),g(x)的情况如下:x-2(-2,0)00,838383,44g(x)+-+g(x)-60-64270所以g(x)的最小值为-6,最大值为0.故-6g(x)0,即x-6f(x)x.(3)解由(2)知,当a3;当a-3时,M(a)F(-2)=|g(-2)-a|=6+a3;当a=-3时,M(a)=3.综上,当M(a)最小时,a=-3.2.(2019宁夏石嘴山三中高三四模)已知函数f(x)=(x-a)ex(aR).(1)讨论f(x)的单调性;(2)当a=
3、2时,F(x)=f(x)-x+ln x,记函数y=F(x)在区间14,1内的最大值为m,证明:-4m-3.(1)解因为f(x)=(x-a)ex,所以f(x)=(x-a+1)ex.当x(-,a-1)时,f(x)0.故f(x)的单调递减区间为(-,a-1),单调递增区间为(a-1,+).(2)证明当a=2时,F(x)=(x-2)ex-x+ln x,则F(x)=(x-1)ex-1+1x=(x-1)ex-1x.当14x1时,x-10,所以g(x)在区间14,1内单调递增.因为g12=e12-20,所以存在x012,1,使得g(x0)=0,即ex0=1x0,即ln x0=-x0.故当x14,x0时,g(
4、x)0;当x(x0,1)时,g(x)0,此时F(x)0.所以G(x)在区间12,1内单调递增,所以G(x)G12=-4,G(x)G(1)=-3.故-4m0,记|f(x)|的最大值为A.(1)求f(x);(2)求A;(3)证明|f(x)|2A.(1)解f(x)=-2sin 2x-(-1)sin x.(2)解(分类讨论)当1时,|f(x)|=|cos 2x+(-1)(cos x+1)|+2(-1)=3-2=f(0).因此A=3-2.当01时,将f(x)变形为f(x)=2cos2x+(-1)cos x-1.(构造函数)令g(t)=2t2+(-1)t-1,则A是|g(t)|在区间-1,1上的最大值,g
5、(-1)=,g(1)=3-2,且当t=1-4时,g(t)取得极小值,极小值为g1-4=-(-1)28-1=-2+6+18.令-11-41,解得15.()当015时,g(t)在区间(-1,1)内无极值点,|g(-1)|=,|g(1)|=2-3,|g(-1)|g(1)|,所以A=2-3.()当150,知g(-1)g(1)g1-4.又g1-4-|g(-1)|=(1-)(1+7)80,所以A=g1-4=2+6+18.综上,A=2-3,015,2+6+18,151,3-2,1.(3)证明由(1),得|f(x)|=|-2sin 2x-(-1)sin x|2+|-1|.当015时,|f(x)|1+2-42(
6、2-3)=2A.当151时,A=8+18+341,所以|f(x)|1+2A.当1时,|f(x)|3-16-4=2A.所以|f(x)|2A.4.已知函数f(x)=ax2-ax-xln x,且f(x)0.(1)求a;(2)证明f(x)存在唯一的极大值点x0,且e-2f(x0)2-2.(1)解f(x)的定义域为(0,+).设g(x)=ax-a-ln x,则f(x)=xg(x),f(x)0等价于g(x)0.因为g(1)=0,g(x)0,故g(1)=0,而g(x)=a-1x,g(1)=a-1,得a=1.若a=1,则g(x)=1-1x.当0x1时,g(x)1时,g(x)0,g(x)单调递增.所以x=1是g
7、(x)的极小值点,故g(x)g(1)=0.综上,a=1.(2)证明由(1)知f(x)=x2-x-xln x,f(x)=2x-2-ln x.设h(x)=2x-2-ln x,则h(x)=2-1x.当x0,12时,h(x)0.所以h(x)在区间0,12内单调递减,在区间12,+内单调递增.又h(e-2)0,h120;当x(x0,1)时,h(x)0.因为f(x)=h(x),所以x=x0是f(x)的唯一极大值点.由f(x0)=0得ln x0=2(x0-1),故f(x0)=x0(1-x0).由x0(0,1)得f(x0)f(e-1)=e-2.所以e-2f(x0)0,故有lnxx=1-t.令g(x)=lnxx
8、,则g(x)=1-lnxx2.由g(x)0,得0xe;由g(x)e.故g(x)在区间(0,e)内单调递增,在区间(e,+)内单调递减.因此,g(x)max=g(e)=1e,所以g(x)的值域为-,1e,要使得方程f(x)=1无实数根,则1-t1e,即t0,f(x)0恒成立.不妨取x=1,有f(1)=et(1+t-e1-t)0.而当t1时,f(1)0,故t0时,f(x)=etx1+tx-e(1-t)xex21+x2-ex2.而当x0时,有ex1+x,故1+x2-ex20,所以f(x)0.所以f(x)在区间(0,+)内单调递减,故当t12时满足题意.当12t1时,01-t1,即11-tln t1-
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-632198.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2018年秋人教版八年级语文上册习题课件:23 周亚夫军细柳(古文今译) (共23张PPT).ppt
