2022-2023学年人教版九年级数学上册第二十一章一元二次方程专题练习试题(含答案解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二十一 一元 二次方程 专题 练习 试题 答案 解析
- 资源描述:
-
1、九年级数学上册第二十一章一元二次方程专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中,有两个相等实数根的是()ABCD2、已知关于x的一元二次方程(m1)x22x10有实数根,则m的取值
2、范围是()Am2Bm2Cm2且m1Dm2且m13、若实数满足,则的值是( )A1B-3或1C-3D-1或34、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A80(1+x)2=100B100(1x)2=80C80(1+2x)=100D80(1+x2)=1005、已知(x2+y2+1)(x2+y23)5,则x2+y2的值为()A0B4C4或2D26、已知x1、x2是关于x的方程x2ax2=0的两根,下列结论一定正确的是()Ax1x2Bx1+x20Cx1x20Dx10,x207、生物兴趣小组的学生,
3、将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是()ABCD8、已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的底边长为()A2B4C8D2或49、若、为方程2x2-5x-1=0的两个实数根,则的值为()A-13B12C14D1510、关于x的方程a2x2+(2a1)x+10,下列说法中正确的是()A当a时,方程的两根互为相反数B当a0时,方程的根是x1C若方程有实数根,则a0且aD若方程有实数根,则a第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一元二次方程3x2-2x-3=0化成3(x+m
4、)2=n的形式是_;若多项式x2-ax+2a-3是一个完全平方式,则a=_.2、若关于x的一元二次方程的根的判别式的值为4,则m的值为_3、若m,n是关于x的方程x2-3x-30的两根,则代数式m2+n2-2mn_4、已知关于x的一元二次方程(a3)x24x+30有实数根,则a的值为_5、若关于x的一元二次方程x2+mx+2n0有一个根是2,则m+n_三、解答题(5小题,每小题10分,共计50分)1、已知方程的一根是,求它的另一根及的值2、解方程(1)2x24x10 (2)3x(x1)22x3、阅读例题,解答问题:例:解方程解:原方程化为令,原方程化成解得,(不合题意,舍去)原方程的解是,请模
5、仿上面的方法解方程:4、关于x的一元二次方程ax2+bx+1=0(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根5、用适当的方法解方程:(1)(2)-参考答案-一、单选题1、A【解析】【分析】根据根的判别式逐一判断即可【详解】A.变形为,此时=4-4=0,此方程有两个相等的实数根,故选项A正确;B.中=0-4=-40,此时方程无实数根,故选项B错误;C.整理为,此时=4+12=160,此方程有两个不相等的实数根,故此选项错误;D.中,=40,此方程有两个不相等的实数根,故选项D错误.故选:A.【考点】本题主要考
6、查根的判别式,熟练掌握根的情况与判别式间的关系是解题的关键2、D【解析】【分析】根据二次项系数非零及根的判别式0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【详解】解:因为关于x的一元二次方程x22xm0有实数根,所以b24ac224(m1)10,解得m2又因为(m1)x22x10是一元二次方程,所以m10综合知,m的取值范围是m2且m1,因此本题选D【考点】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式0,找出关于m的一元一次不等式组是解题的关键3、A【解析】【分析】设x2-3x=y将y代入原方程得到关于y的一元二次方程y2+2y-3=0即可,解这
7、个方程求出y的值,然后利用根的判别式检验即可.【详解】设x2-3x=y将y代入原方程,得y2+2y-3=0,解之得,y=1或y=-3当y=1时,x2-3x=1,=b2-4ac=(-3)2-41(-1)=9+4=130,有两个不相等的实数根,当y=-3时,x2-3x=-3,=b2-4ac=(-3)2-413=9=120,无解故y=1,即x2-3x=1故选A【考点】本题考查了换元法解一元二次方程及一元二次方程根的判别式,解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对
8、象的知识背景中去研,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.4、A【解析】【分析】利用增长后的量=增长前的量(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A【考点】本题考查了一元二次方程的应用(增长率问题)解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列
9、出方程5、B【解析】【分析】设x2+y2z,则原方程换元为z22z80,可得z14,z22,由此即可求解【详解】解:设 x2+y2z,则原方程换元为(z+1)(z3)5,整理得:z22z80,(z4)(z+2)0,解得:z14,z22,即x2+y24或x2+y22,x2+y20,x2+y22不合题意,舍去,x2+y24故选:B【考点】本题考查了换元法解一元二次方程,正确掌握换元法是解决本题的关键,注意代数式x2+y2本身的取值范围不能忘6、A【解析】【分析】A、根据方程的系数结合根的判别式,可得出0,由此即可得出x1x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-635327.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级上册英语课件-Unit 6 Lesson 3 She works in a hospital. _鲁科版(五四学制)(三起).ppt
