2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 度人 九年级 数学 上册 第二 十四 综合测试 试卷 解析
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B的坐标分别为,点C为坐标平面内一点,点M为线段的中点,连接,则的最大值为( )ABCD2、如图,、为O
2、的切线,切点分别为A、B,交于点C,的延长线交O于点D下列结论不一定成立的是()A为等腰三角形B与相互垂直平分C点A、B都在以为直径的圆上D为的边上的中线3、如图,点B,C,D在O上,若BCD130,则BOD的度数是()A50B60C80D1004、如图,、为的切线,、为切点,点为弧上一点,过点作的切线分别交、于、,若,则的周长等于()ABCD5、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD6、一个等腰直角三角形的内切圆与外接圆的半径之比为()ABCD7、如图,在四边形ABCD中,则AB()A4B5CD8、如图,O的直径垂直于弦,垂足为若,则的长是
3、()ABCD9、下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径10、已知扇形的半径为6,圆心角为则它的面积是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用反证法证明:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:_2、如图,在中,以点为圆心、为半径的圆交于点,则弧AD的度数为_度3、如图,已知点C是O的直径AB上的一点,过点C作弦DE,使CD=CO若AD的度数为35,则的度数是_4、如图,
4、AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_5、如图,在中,点是的中点,连接交弦于点,若,则的长是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,ABAC,BAC120,点 D 在边 BC 上,O 经过点 A 和点 B且与边 BC 相交于点 D(1)判断 AC 与O 的位置关系,并说明理由(2)当 CD5 时,求O 的半径2、在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点Q是点P的等和点已知点(1)在,中,点P的等和点有_;(2)点A在直线上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点和线段MN,对于所有满足的点C,线
5、段MN上总存在线段PC上每个点的等和点若MN的最小值为5,直接写出b的取值范围3、已知四边形内接于O,垂足为E,垂足为F,交于点G,连接(1)求证:;(2)如图1,若,求O的半径;(3)如图2,连接,交于点H,若,试判断是否为定值,若是,求出该定值;若不是,说明理由4、(1)如图,在ABC中,AB=4,AC=3,若AD平分BAC交于点,那么点到的距离为 (2)如图,四边形内接于,为直径,点B是半圆的三等分点(弧弧),连接,若平分,且,求四边形的面积(3)如图,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形场地圆O,设计人员准备在内接四边形ABCD区域内进行花卉图
6、案设计,其余部分方便游客参观,按照设计要求,四边形ABCD满足ABC=60,AB=AD,且AD+DC=10(其中 ),为让游客有更好的观体验,四边形ABCD花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD?若存在,求出这个最大值,不存在请说明理由5、如图,为的直径,过圆上一点作的切线交的延长线与点,过点作交于点,连接(1)直线与相切吗?并说明理由;(2)若,求的长-参考答案-一、单选题1、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解
7、答【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,则ABO为等腰直角三角形,AB=,N为AB的中点,ON=,又M为AC的中点,MN为ABC的中位线,BC=1,则MN=,OM=ON+MN=,OM的最大值为故答案选:B【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大2、B【解析】【分析】连接OB,OC,令M为OP中点,连接MA,MB,证明RtOPBRtOPA,可得BP=AP,OPB=OPA,BOC=AOC,可推出为等腰三角形,可判断A;根据
8、OBP与OAP为直角三角形,OP为斜边,可得PM=OM=BM=AM,可判断C;证明OBCOAC,可得PCAB,根据BPA为等腰三角形,可判断D;无法证明与相互垂直平分,即可得出答案【详解】解:连接OB,OC,令M为OP中点,连接MA,MB,B,C为切点,OBP=OAP=90,OA=OB,OP=OP,RtOPBRtOPA,BP=AP,OPB=OPA,BOC=AOC,为等腰三角形,故A正确;OBP与OAP为直角三角形,OP为斜边,PM=OM=BM=AM点A、B都在以为直径的圆上,故C正确;BOC=AOC,OB=OA,OC=OC,OBCOAC,OCB=OCA=90,PCAB,BPA为等腰三角形,为的
9、边上的中线,故D正确;无法证明与相互垂直平分,故选:B【考点】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,圆的性质,掌握知识点灵活运用是解题关键3、D【解析】【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得BAD+BCD=180,即可求得BAD的度数,再根据圆周角的性质,即可求得答案【详解】圆上取一点A,连接AB,AD,点A、B,C,D在O上,BCD=130,BAD=50,BOD=100.故选D【考点】此题考查了圆周角的性质与圆的内接四边形的性质此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法4、B【解析】【分析】由切线长定理可得,然后
10、根据线段之间的转化即可求得的周长【详解】、为的切线,所以,又为的切线,的周长故选:B【考点】此题考查了圆中切线长定理的运用,解题的关键是熟练掌握切线长定理5、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的知识此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决6、D【解析】【分析】设
11、等腰直角三角形的直角边是1,则其斜边是根据直角三角形的内切圆半径是两条直角边的和与斜边的差的一半,得其内切圆半径是;其外接圆半径是斜边的一半,得其外接圆半径是所以它们的比为=【详解】解:设等腰直角三角形的直角边是1,则其斜边是;内切圆半径是,外接圆半径是,所以它们的比为=故选:D【考点】本题考查三角形的内切圆与外接圆的知识,解题的关键是熟记直角三角形外接圆的半径和内切圆的半径公式:直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半;直角三角形外接圆的半径是斜边的一半7、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函
12、数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.8、C【解析】【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD【详解】解:O的直径垂直于弦, ,CE=1CD=2故选:C【考点】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键9、D【解析】【分析】根据切线的判定,圆的知识,可得
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-641574.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020年最新保姆聘用合同照顾孩子.pdf
