2022年高考数学必刷压轴题 专题07 指数型函数的单调性、对称性(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年高考数学必刷压轴题 专题07 指数型函数的单调性、对称性含解析 2022 年高 数学 压轴 专题 07 指数 函数 调性 对称性 解析
- 资源描述:
-
1、专题07 指数型函数的单调性、对称性【方法点拨】1. 指数复合型函数的对称中心为.记忆方法:横下对,纵半分(即横坐标是使分母取对数的值,但真数为保证有意义,取的是绝对值而已,而纵坐标是分母、分子中的常数分别作为分母、分子的值的一半).2.函数的性质如下:(1)定义域是R; (2)值域是(1,1); (3)在(,+)单增; (4)是奇函数,其图象关于坐标原点对称. 说明:形如的函数,即指数函数与一次分式函数复合类型的函数是重要的考察的载体,通过变形(部分分式),可得到、等.【典型例题】例1 已知函数,则满足不等式的实数的取值范围是 .【答案】【解析】的对称中心是,其定义域为R且单减令,则为R上的
2、单调递减的奇函数由得即因为为奇函数,故所以又在R上单减,所以,解之得所以实数的取值范围是.例2 已知,设函数,的最大值、最小值分别为,则的值为 .【答案】4039【分析】研究函数的对称性,利用函数(其中是奇函数)在对称区间上的最大值、最小值的和为.【解析】设则所以的图象关于点对称所以的图象关于点对称故的值为4039.例3 已知函数()是奇函数,设函数,,若,其中,试比较的大小.【答案】.【分析】研究函数的单调性,逆用单调性脱“g”即可.【解析】易得,故,下面考察函数的单调性.对于在单增,由复合函数单调性得在单减;对于,设(),在单减,由复合函数单调性得在单减,再由函数单调性得性质得,在单减,因
3、为,所以.【巩固练习】1.已知函数的图象关于坐标原点对称,则实数的值为_.2. 已知函数,则满足不等式的实数的取值范围是 .3.已知,则的值为 4. 已知函数在区间k,k上的值域为m,n,则mn=_ 5. 已知函数是定义域为的奇函数,当时,不等式恒成立,则实数的取值范围是 .【答案与提示】1.【答案】1【提示】由立得.2.【答案】【提示】的对称中心是,其定义域为R且单增.3.【答案】【思路一】从所求式中自变量的特征,被动发现函数的对称性.设若,尝试去求的值,易得.【思路二】主动发现函数的对称性,设,则其对称中心为,则的对称中心也为,故.4. 【答案】2【提示】,奇,单增.5. 【答案】.【解析】函数是定义域为的奇函数,解得.经检验,当时,函数为奇函数,即所求实数的值为.设且,则,即,所以是上的减函数.由,可得.是上的奇函数,又是上的减函数,所以对恒成立,令,对恒成立,思路一:(转化为二次函数区间上的最大值0)令,该函数开口朝上,故或取得最大值,解得,所以实数的取值范围为.思路二:(分离变量)即对恒成立,设,则在区间上单减,在区间上单增所以所以,故实数的取值范围为.
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-717472.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
