2023届新高考数学培优专练 专题10 数列求和方法之错位相减法(教师版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届新高考数学培优专练 专题10 数列求和方法之错位相减法教师版 2023 新高 数学 培优专练 专题 10 数列 求和 方法 错位 减法 教师版
- 资源描述:
-
1、专题10 数列求和方法之错位相减法一、单选题1已知等比数列an的前n项和为Sn,若S3=7,S6=63,则数列nan的前n项和为( )A-3+(n+1)2nB3+(n+1)2nC1+(n+1)2nD1+(n-1)2n【答案】D【分析】利用已知条件列出方程组求解即可得,求出数列an的通项公式,再利用错位相减法求和即可.【详解】设等比数列an的公比为q,易知q1,所以由题设得,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n2n-1.设数列nan的前n项和为Tn,则Tn=120+221+322+n2n-1,2Tn=121+222+323+n2n
2、,两式作差得-Tn=1+2+22+2n-1-n2n=-n2n=-1+(1-n)2n,故Tn=1+(n-1)2n.故选:D.【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题.二、解答题2在公差不为零的等差数列中,前五项和,且,依次成等比数列,数列的前项和满足().(1)求及;(2)设数列的前项和为,求.【答案】(1),;(2).【分析】(1)设等差数列的公差为,利用等差数列的性质结合等比中项的应用,列方程求出公差,进而得出数列;当时,由可得,两式作差并利用等比数列的通项公式计算出;(2)利用错位相减法计算出数列的前项和为【详解】(1)设等差数列的公差为,则.
3、因为,所以;又,依次成等比数列,所以,所以.即,解得(舍)或,所以,即.当时,即,所以;当时,由可得,相减得,即,所以数列是首项为,公比的等比数列,所以.(2),所以,则,相减得,所以.【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,考查学生计算能力,数列求和的方法如下:1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方
4、法求和3已知数列an的前n项和为Sn,且Sn2n1. (1)求数列an的通项公式,(2)设函数f(x)()x,数列bn满足条件b1f(1),f(bn+1)求数列bn的通项公式, 设cn,求数列cn的前n项和Tn【答案】(1)an2n,nN*;(2)bn3n1;Tn5【分析】(1)利用及可得通项公式;(2)化简关系式,由指数函数性质得数列是等差数列,从而得通项公式;由错位相减法求和【详解】(1)由Sn2n1,即Sn2n+12,当n1时,anSnSn1(2n+12)(2n2)2n,当n1时,a1S12,满足上式则有数列an的通项公式为an2n,nN*;(2)f(x)()x,b12,f(bn+1)可
5、得()(),即有bn+1bn+3,可得bn以2首项和3为公差的等差数列,即有bn3n1;cn,前n项和Tn25()2+(3n4)()+(3n1)()n,Tn2()2+5()3+(3n4)()n+(3n1)()n+1,相减可得,Tn()2+3()+3()(3n1)()n+1(3n1)()n+1, 化简可得,前n项和Tn5【点睛】本题考查由求,考查求等差数列的通项公式,错位相减法求和数列求和的常用方法:设数列是等差数列,是等比数列, (1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的前项和应用错位相减法;(3)裂项相消法;数列(为常数,)的前项和用裂项相消法;(4)分
6、组(并项)求和法:数列用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足(为常数)的数列,需用倒序相加法求和4数列的前项和,数列的前项和,满足.(1)求及;(2)设数列的前项和为,求并证明:.【答案】(1),;(2),证明见解析.【分析】(1)利用可求出,由可得,两式相减整理可得,从而可得数列是首项为,公比的等比数列,进而可求出,(2)先利用错位相法求出,再利用放缩法可证得结论【详解】(1)当时,;当时,;符合上式,所以.当时,即,所以;当时,由可得,相减得,即,所以数列是首项为,公比的等比数列,所以.(2),所以,则,相减得,所以.因为,所以,所以.【
7、点睛】方法点睛:数列求和的方法通常有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法5已知数列是公差不为零的等差数列,若,且、成等比数列.(1)求数列的通项公式;(2)若,求数列的前项和.【答案】(1);(2).【分析】(1)设等差数列的公差为,利用已知条件得出关于的方程,求出的值,利用等差数列的通项公式可求得数列的通项公式;(2)求得,然后利用错位相减法可求得.【详解】(1)设等差数列的公差为,、成等比数列,则,即,整理得,.因此,;(2)由(1)可得.,(2).得,因此,.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求解
8、;(2)对于型数列,其中为等差数列,为等比数列,利用错位相减法求和;(3)对于型数列,利用分组求和法;(4)对于型数列,其中是公差为的等差数列,利用裂项相消法求和.6已知数列an的前n项和为Sn,且满足2Sn3an3,其中nN*(1)证明:数列an为等比数列;(2)设bn2n1,cn,求数列cn的前n项和Tn【答案】(1)证明见解析;(2)【分析】(1)根据数列的递推关系作差法即可证明;(2)利用错位相减求和法即可求出答案【详解】(1)因为,-所以当时,解得,当时,-由-并整理得,由上递推关系得,所以,故数列是首项为3,公比为3的等比数列,(2)由(1)得:,又因为,所以,所以,两式相减得:,
9、即:,整理可得:【点睛】关键点睛:(1)解题关键在于利用递推式得到,和,利用作差法求出;(2)解题关键在于列出,利用错位相消求和法进行求解,难度属于中档题7已知等比数列中,.(1)求数列的通项公式;(2)记,求数列的前项和.【答案】(1);(2).【分析】(1)用等比数列基本量计算表示出已知条件,解方程即可求得公比,代入等比数列的通项公式即可求得结果;(2)把(1)中求得的结果代入,求出,利用错位相减法求出【详解】(1)设数列的公比为,由题意知:,即.,即.(2),.得.【点睛】错位相减法求和的方法:如果数列是等差数列,是等比数列,求数列的前项和时,可采用错位相减法,一般是和式两边同乘以等比数
10、列的公比,然后作差求解; 在写“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.8已知数列的前项和. (1)求数列的通项公式;(2)设,求数列的前项和.(3)若存在正整数,使得成立,求实数的取值范围.【答案】(1);(2);(3).【分析】(1)利用,求得,注意检验首项.(2),错位相减法求和得解.(3)当时,若为奇数,则,单调递增;若为偶数,则,单调递减,利用数列单调性得解.【详解】(1)因为,所以当时,所以,因为,不适合,所以.(2)由题意得当时,当时,所以,令,则,由-得 ,所以,所以.(3)由题意知,当时,若为奇数,则,单调递增;若为偶数,则,单调递减,所
11、以,因为存在正整数,使得成立,所以当为奇数时,则,所以,所以,当为偶数时,则,所以,所以,即.【点睛】本题考查利用与的关系求通项及错位相减法求和. 已知求的三个步骤:(1)先利用求出.(2)用替换中的得到一个新的关系,利用便可求出当时的表达式(3)对时的结果进行检验,看是否符合时的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分与两段来写错位相减法求和的方法:如果数列是等差数列,是等比数列,求数列 的前项和时,可采用错位相减法,一般是和式两边同乘以等比数列的公比,然后作差求解; 在写“ ”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.9已知数列满
12、足,.设.(1)求证:数列是等比数列;(2)求数列的前项和为.【答案】(1)证明见解析;(2).【分析】(1)由递推关系式可得,从而可证明数列是等比数列;(2)先由(1),根据题中条件,求出,再利用错位相减法进行求和可得【详解】(1)由,可得,即则数列是以为首项,为公比的等比数列;(2)由(1)可得,则有两式作差得:.10已知等比数列满足,.(1)定义:首项为1且公比为正数的等比数列为“数列”,证明:数列是“数列”;(2)记等差数列的前项和记为,已知,求数列的前项的和.【答案】(1)证明见解析;(2).【分析】(1)由等比数列的通项公式求出公比,根据题意证明数列是“数列”;(2)由等差数列的性
13、质求出,当时,由等差数列的求和公式求出;当时,由错位相减法求出.【详解】(1)证明:由题意可设公比为,则得:得:或数列是“数列”.(2)设数列的公差为易得:得:,得:由(1)知若,则若,则,得:.【点睛】对于 “等差乘等比”类型的数列,一般采用错位相减法求数列的和.11已知等比数列的公比,且满足,数列的前项和,.(1)求数列和的通项公式;(2)设,求数列的前项和.【答案】(1);(2).【分析】(1)根据题干已知条件可列出关于首项与公比的方程组,解出与的值,即可计算出数列的通项公式,再根据公式进行计算可得数列的通项公式;(2)先分为奇数和为偶数分别计算出数列的通项公式,在求前项和时,对奇数项运
14、用裂项相消法求和,对偶数项运用错位相减法求和,最后相加进行计算即可得到前项和.【详解】(1)依题意,由,可得,因为,所以解得,对于数列:当时,当时,当时,也满足上式,.(2)由题意及(1),可知:当为奇数时,当为偶数时,令,则,两式相减,可得,.【点睛】关键点点睛:第二问中当为奇数时,求出,并对进行裂项为是解题关键,本题主要考查等差数列和等比数列的基本量的运算,以及数列求和问题.考查了方程思想,分类讨论思想,转化与化归能力,整体思想,裂项相消法和错位相减法求和,以及逻辑推理能力和数学运算能力.本题属中档偏难题.12已知各项都大于1的数列an的前n项和为Sn,4Sn4n1an2:数列bn的前n项
15、和为Tn,bnTn1.(1)分别求数列an和数列bn的通项公式;(2)设数列cn满足cnanbn,若对任意的nN*.不等式5(n3bn)2bnSnn(c1c2c3cn)恒成立,试求实数的取值范围.【答案】(1);(2).【分析】(1)根据与的关系可得,以及,再利用等差数列的通项公式以及等比数列的通项公式即可求解. (2)利用错位相减法求出,然后再分离参数即可求解.【详解】(1)由题可知,由-得:,故或,又,(舍)或,若,则有,而,所以,不满足题意,所以,故,两式相减得,又,是等比数列,首项为,公比为,(2)设由(1)得,相减得:,又,可化为:,即,又,.【点睛】关键点点睛:本题考查了与的关系、
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-752527.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
