分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2024届高考一轮复习专题训练20 函数y=Asin(ωx φ)的图象及其应用(原卷附答案).docx

  • 上传人:a****
  • 文档编号:765710
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:27
  • 大小:1.65MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2024届高考一轮复习专题训练20 函数y=Asinx 的图象及其应用原卷附答案 2024 高考 一轮 复习 专题 训练 20 函数 Asin 图象 及其 应用 原卷附 答案
    资源描述:

    1、考向20 函数y=Asin(x+)的图象及其应用1已知的部分图象求的方法:(1)利用极值点的纵坐标求;(2)把某点的坐标代入求2已知的部分图象求的方法:由,即可求出常用结论:(1)相邻两个极大(小)值点之间的距离为;(2)相邻两个零点之间的距离为(3)极值点到相邻的零点,自变量取值区间长度为3已知的部分图象求的方法:求的值时最好选用最值点求峰点:;谷点:也可用零点求,但要区分该零点是升零点,还是降零点升零点(图象上升时与轴的交点):;降零点(图象下降时与轴的交点):(以上)此外也可以把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)函数的物理意义简谐运动的图象所对应的函数解

    2、析式,其中在物理中,描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;这个简谐运动的周期是,这是做简谐运动的物体往复运动一次所需要的时间;这个简谐运动的频率由公式给出,它是做简谐运动的物体在单位时间内往复运动的次数;称为相位;时的相位称为初相1平移与伸缩由函数的图像变换为函数的图像的步骤;方法一:先相位变换,后周期变换,再振幅变换,不妨采用谐音记忆:我们“想欺负”(相一期一幅)三角函数图像,使之变形方法二:先周期变换,后相位变换,再振幅变换注:在进行图像变换时,提倡先平移后伸缩(先相位后周期,即“想欺负”)

    3、,但先伸缩后平移(先周期后相位)在题目中也经常出现,所以必须熟练掌握,无论哪种变化,切记每一个变换总是对变量而言的,即图像变换要看“变量”发生多大变化,而不是“角”变化多少1(2022全国模拟预测(理)函数的图象按以下次序变换:横坐标变为原来的;向左平移个单位长度;向上平移一个单位长度;纵坐标变为原来的2倍,得到的图象,则的解析式为()ABCD2(2022河南省杞县高中模拟预测(文)已知点是函数图象的一个对称中心,其中,将函数的图象向右平移个单位长度得到函数的图象,则()ABCD3(2022河南平顶山市第一高级中学模拟预测(文)已知直线是函数的图像的一条对称轴,为了得到函数的图像,可把函数的图

    4、像()A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度4(2022全国高三专题练习(文)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是()ABCD5(2022青海海东市第一中学模拟预测(文)将函数的图象向右平移个单位长度,然后将所得图象上所有点的横坐标缩小到原来的(纵坐标不变),得到函数的图象,则下列说法正确的是()AB在上单调C的图象关于直线对称D当时,函数的值域为1(2022上海浦东新二模)将函数的图像向左平移个单位后,得到函数的图像,设为以上两个函数图像不共线的三个交点,则的面积不可能为()ABCD2(2022青海海东市第一中学

    5、模拟预测(理)将函数的图象向右平移 个单位长度,然后将所得图象上所有点的横坐标缩小到原来的 (纵坐标不变),得到函数的图象,则当时,函数的值域为()ABCD3(2022青海海东市第一中学模拟预测(文)已知函数的图象向左平移个单位长度后得到函数的图象,则()ABCD4(2022广东茂名二模)已知函数 的部分图象如图所示将函数的图象向左平移 个单位得到 的图象,则()A )B C D 5(2022安徽省舒城中学三模(理)将函数的图象向左平移个单位,得到函数的图象,若在上为增函数,则最大值为()ABCD6(2022黑龙江哈九中三模(文)已知函数的部分图象如图所示,且将图象上所有点的横坐标缩小为原来的

    6、,再向上平移一个单位长度,得到的图象若,则的最大值为()ABCD7(多选题)(2022全国模拟预测)将函数的图象向右平移个单位,得到的图象关于y轴对称,则下列说法正确的是()A最小正周期的最大值为B最小正周期的最大值为C当的最小正周期取最大值时,平移后的函数在上单调递增D当的最小正周期取最大值时,平移后的函数在上单调递减8(多选题)(2022山东德州市教育科学研究院三模)已知函数图像的一条对称轴和一个对称中心的最小距离为,则()A函数的最小正周期为B将函数的图像向左平移个单位长度后所得图像关于原点对称C函数在上为增函数D设,则在内有20个极值点9(多选题)(2022全国模拟预测)已知函数,则下

    7、列说法正确的是()A函数的最小正周期为B的最大值为C的图像关于直线对称D将的图像向右平移个单位长度,再向上平移个单位长度后所得图像对应的函数为奇函数10(多选题)(2022全国模拟预测)函数的部分图像如图所示,则()ABC函数在上单调递增D函数图像的对称轴方程为11(2022上海闵行二模)若函数的图像向右平移个单位后是一个奇函数的图像,则正数的最小值为_;12(2022河北衡水高三阶段练习)把函数的图像向右平移个单位长度,得到的图像所对应的函数为偶函数,则的最小正值为_13(2022山东潍坊三模)已知函数向右平移个单位长度后得到若对于任意的,总存在,使得,则的最小值为_14(2022江苏扬州模

    8、拟预测)已知函数,将的图象上所有点横坐标变为原来的倍(纵坐标不变),再将所得函数图象向左平移个单位长度,得到图象,若在有个不同的解,则_.15(2022重庆八中模拟预测)已知函数的部分图象如图所示(1)求函数的解析式;(2)将函数的图象上所有的点向右平移个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数的图象当时,方程恰有三个不相等的实数根,求实数a的取值范围和的值16(2022全国模拟预测)条件:;条件:已知,再从条件、条件这两个条件中选择一个作为条件,求:(1)求的解析式;(2)将的图象上的各点的横坐标变为原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度,

    9、得到的图象,求函数在上的单调递减区间和最大值17(2022湖北襄阳五中模拟预测)已知数的相邻两对称轴间的距离为.(1)求的解析式;(2)将函数的图象向右平移个单位长度,再把各点的横坐标缩小为原来的(纵坐标不变),得到函数的图象,当时,求函数的值域;(3)对于第(2)问中的函数,记方程在上的根从小到大依次为,若,试求与的值.18(2022上海市建平中学高三阶段练习)行列式按第一列展开得,记函数,且的最大值是4(1)求A;(2)将函数的图像向左平移个单位,再将所得图像上各点的横坐标扩大为原来的2倍,纵坐标不变,得到函数的图像,求在上的值域19(2022陕西武功县普集高级中学高三阶段练习(理)已知函

    10、数的图像关于直线对称,且在区间上单调递增;(1)求解析式(2)若,将函数的图象所有的点向右平移个单位长度,再把所得图像上各点横坐标缩短到原来的(纵坐标不变),得到的图象;若在上恰有两个零点,求的取值范围1(2022浙江高考真题)为了得到函数的图象,只要把函数图象上所有的点()A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度2(2022全国高考真题(文)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是()ABCD3(2021全国高考真题(理)把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图

    11、像,则()ABCD4(2020天津高考真题)已知函数给出下列结论:的最小正周期为;是的最大值;把函数的图象上所有点向左平移个单位长度,可得到函数的图象其中所有正确结论的序号是()ABCD5(2019天津高考真题(文)已知函数是奇函数,将的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为.若的最小正周期为,且,则ABCD6(2014辽宁高考真题(文)将函数的图象向右平移个单位长度,所得图象对应的函数A在区间上单调递减B在区间上单调递增C在区间上单调递减D在区间上单调递增7(2015湖南高考真题(理)将函数的图像向右平移个单位后得到函数的图像,若对满足的,有,则ABCD8(

    12、2012天津高考真题(文)将函数(其中0)的图像向右平移个单位长度,所得图像经过点,则的最小值是AB1CD29(2018天津高考真题(理)将函数的图象向右平移个单位长度,所得图象对应的函数A在区间上单调递增B在区间上单调递减C在区间上单调递增D在区间上单调递减10(2018天津高考真题(文)将函数的图象向右平移个单位长度,所得图象对应的函数A在区间 上单调递增B在区间 上单调递减C在区间 上单调递增D在区间 上单调递减11(2017全国高考真题(理)已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是A把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向

    13、右平移个单位长度,得到曲线C2B把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C21【答案】A【解析】由题意,纵坐标变为原来的2倍,得到的图象,故变换前为;向上平移一个单位长度,故变换前为;向左平移个单位长度,故变换前为;横坐标变为原来的,故变换前为,故的解析式为故选:A2【答案】D【解析】由题意知,所以,所以,又,所以,即,将的图象向右平移个单位长度后得的图

    14、象,即故选:D3【答案】B【解析】依题意,直线是函数的图像的一条对称轴,则,即,解得,因为,所以,所以函数将的图像,向右平移个单位长度得故选:B4【答案】C【解析】由题意知:曲线为,又关于轴对称,则,解得,又,故当时,的最小值为.故选:C.5【答案】D【解析】将的图象向右平移个单位长度得,再将图象上各点的横坐标缩小到原来的(纵坐标不变)得,则,故A项错误;,则,.则在上不单调.故B项错误;由,可知的图象不关于直线对称.故C项错误;因为,所以,所以,所以函数在上的值域为,D项正确故选:D1【答案】D【解析】由题意得,在同一坐标系内作出图像,如下图所示令,解得,不妨取x轴正半轴第一个交点为A,第二

    15、个交点为B,所以若C点位于时,的面积,故C正确当C点位于时,的面积,当C点位于时,的面积,故B正确,因为,此时为面积的2倍,以此类推,当C位于不同位置时,的面积应为的整数倍,故A正确,D错误,故选:D2【答案】D【解析】解:将的图象向右平移个单位长度得:的图象,再将图象上各点的横坐标缩小到原来的(纵坐标不变)得:的图象,因为,所以,所以所以函数的值域为故选:D3【答案】B【解析】,解得:,.故选:B.4【答案】D【解析】由图象知,又,将函数的图象向左平移个单位得到的图象,故选:D5【答案】A【解析】依题意,由,得:,于是得的一个单调递增区间是,因在上为增函数,因此,即有,解得,即最大值为故选:

    16、A.6【答案】C【解析】设的最小正周期为T,则由图可知,得,则,所以,又由题图可知图象的一个对称中心为点,故,故,因为,所以,所以.又因为,故,所以;将图象上所有点的横坐标缩小为原来的,再向上平移一个单位长度,得到的图象;因为,所以 同时令取得最大值3,由,可得,又,要求的最大值,故令,得;令,得,所以的最大值为,故选:C.7(多选题)【答案】AC【解析】因为,所以其图象向右平移个单位后得到函数的图象,因为其函数图象关于y轴对称,所以,所以,所以,所以又因为,令,所以,当时,所以在上单调递增故选:AC8(多选题)【答案】ABD【解析】根据题意可得,则,即,A正确;将函数的图像向左平移个单位长度

    17、得为奇函数,其图像关于原点对称,B正确;,则在上为减函数,C错误;,则为奇函数当时,则令,则,即,即,则共10个则在内有20个极值点,D正确;故选:ABD9(多选题)【答案】BD【解析】,故的最小正周期为,最大值为,故A错误,B正确;对称轴方程为,即,当时,不为整数,故C错误;对于选项D,将的图像向右平移个单位长度后得到,然后将此图像向上平移个单位长度,得到函数的图像,是一个奇函数,故D正确.故选:BD.10(多选题)【答案】AD【解析】由图像知函数的周期,解得:,所以A对;由五点对应法得,因为,所以,所以B错误,所以当时,函数单调递减.取,得的一个单调递减区间为,所以C错,函数图像的对称轴方

    18、程为,即,所以D对故选:AD11【答案】【解析】,向右平移个单位后解析式为,则要想使得为奇函数,只需,解得:,因为,所以,解得:,当时,正数取得最小值,所以.故答案为:12【答案】【解析】由函数 把函数的图象向右平移个单位长度,得到函数 即的图象因为为偶函数,所以,解得,当时,取得最小正值,最小正值为故答案为:13【答案】【解析】函数向右平移个单位长度后得到,因为,所以,所以,因为对于任意的,总存在,使得,所以的取值范围应包含,根据余弦函数的性质,为使取最小值,只需函数在上单调且值域为即可.由可得,因此的最小值为.故答案为:.14【答案】【解析】根据题意可知,由得,由,可得,所以函数关于对称,

    19、因为,所以由可得,因此故答案为:15【解析】(1)解:由图示得:,又,所以,所以,所以,又因为过点,所以,即,所以,解得,又,所以,所以;(2)解:由已知得,当时,令,则,令,则,所以,因为有三个不同的实数根,则,所以,即,所以16【解析】(1);若选条件,;若选条件,.(2)若选条件,令,解得:,在上的单调递减区间为,在上的单调递减区间为;当时,则当,即时,取得最大值;若选条件,令,解得:,在上的单调递减区间为,在上的单调递减区间为;当时,则当,即时,取得最大值.17【解析】(1)由题意,函数因为函数图象的相邻两对称轴间的距离为,所以,可得.故(2)将函数的图象向右平移个单位长度,可得的图象

    20、.再把橫坐标缩小为原来的,得到函数的图象.当时,当时,函数取得最小值,最小值为,当时,函数取得最大值,最大值为,故函数的值域.(3)由方程,即,即,因为,可得,设,其中,即,结合正弦函数的图象,可得方程在区间有5个解,即,其中,即解得所以. 综上,18【解析】(1)(1)因为的最大值是4,所以,故,(2)由(1)知,向左移得, 横坐标变为原来2倍得 因为,所以,因此,所以.19【解析】(1)图像关于直线对称,且在区间上单调递增;,即,则有,又,则或时,所以,则时,所以,则;综上,或(2),则,作出图像如图所示,可知 1【答案】D【解析】因为,所以把函数图象上的所有点向右平移个单位长度即可得到函

    21、数的图象故选:D.2【答案】C【解析】由题意知:曲线为,又关于轴对称,则,解得,又,故当时,的最小值为.故选:C.3【答案】B【解析】解法一:函数图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到的图象,再把所得曲线向右平移个单位长度,应当得到的图象,根据已知得到了函数的图象,所以,令,则,所以,所以;解法二:由已知的函数逆向变换,第一步:向左平移个单位长度,得到的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到的图象,即为的图象,所以.故选:B.4【答案】B【解析】因为,所以周期,故正确;,故不正确;将函数的图象上所有点向左平移个单位长度,得到的图象,故正确.故选:B.

    22、【点晴】本题主要考查正弦型函数的性质及图象的平移,考查学生的数学运算能力,逻辑分析那能力,是一道容易题.5【答案】C【解析】只需根据函数性质逐步得出值即可【详解】因为为奇函数,;又,又,故选C6【答案】B【解析】【详解】试题分析:将函数的图象向右平移个单位长度,得,函数在上为增函数考点:函数图象的平移、三角函数的单调性7【答案】D【解析】【详解】试题分析:向右平移个单位后,得到,又,不妨,又,故选D.考点:三角函数的图象和性质.8【答案】D【解析】【详解】试题分析:函数的图象向右平移个单位长度,所得函数的解析式为,因为它的图象经过点,所以,即,又因为,所以的最小值是,故选D.考点:1.图象平移

    23、变换;2.正弦函数的图象与性质.9【答案】A【解析】由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:,即,令可得一个单调递减区间为:,本题选择A选项.10【答案】A【解析】【详解】分析:首先确定平移之后的对应函数的解析式,然后逐一考查所给的选项是否符合题意即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的解析式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项C,D错误;本题选择A选项.成套的课件成套的教案成套的试题成套的微专题尽在高中数学同步资源大全QQ群552511468也可联系微信fjmath加入百度网盘群4000G一线老师必备资料一键转存自动更新永不过期11【答案】D【解析】【详解】把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选D

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2024届高考一轮复习专题训练20 函数y=Asin(ωx φ)的图象及其应用(原卷附答案).docx
    链接地址:https://www.ketangku.com/wenku/file-765710.html
    相关资源 更多
  • 人教版三年级下册数学期末测试卷【全优】.docx人教版三年级下册数学期末测试卷【全优】.docx
  • 人教版三年级下册数学期末测试卷【中心小学】.docx人教版三年级下册数学期末测试卷【中心小学】.docx
  • 人教版三年级下册数学期末测试卷【word】.docx人教版三年级下册数学期末测试卷【word】.docx
  • 人教版三年级下册数学期末测试卷【b卷】.docx人教版三年级下册数学期末测试卷【b卷】.docx
  • 人教版三年级下册数学期末测试卷【a卷】.docx人教版三年级下册数学期末测试卷【a卷】.docx
  • 人教版三年级下册数学期末测试卷word版.docx人教版三年级下册数学期末测试卷word版.docx
  • 人教版三年级下册数学期末测试卷word.docx人教版三年级下册数学期末测试卷word.docx
  • 人教版三年级下册数学期末测试卷a4版打印.docx人教版三年级下册数学期末测试卷a4版打印.docx
  • 人教版三年级下册数学期末测试卷a4版.docx人教版三年级下册数学期末测试卷a4版.docx
  • 人教版三年级下册数学期末测试卷1套.docx人教版三年级下册数学期末测试卷1套.docx
  • 人教版三年级下册数学期中测试卷(黄金题型).docx人教版三年级下册数学期中测试卷(黄金题型).docx
  • 人教版三年级下册数学期中测试卷(预热题).docx人教版三年级下册数学期中测试卷(预热题).docx
  • 人教版三年级下册数学期中测试卷(达标题).docx人教版三年级下册数学期中测试卷(达标题).docx
  • 人教版三年级下册数学期中测试卷(轻巧夺冠).docx人教版三年级下册数学期中测试卷(轻巧夺冠).docx
  • 人教版三年级下册数学期中测试卷(能力提升).docx人教版三年级下册数学期中测试卷(能力提升).docx
  • 人教版三年级下册数学期中测试卷(考试直接用).docx人教版三年级下册数学期中测试卷(考试直接用).docx
  • 人教版三年级下册数学期中测试卷(考点梳理).docx人教版三年级下册数学期中测试卷(考点梳理).docx
  • 人教版三年级下册数学期中测试卷(考点提分).docx人教版三年级下册数学期中测试卷(考点提分).docx
  • 人教版三年级下册数学期中测试卷(综合题).docx人教版三年级下册数学期中测试卷(综合题).docx
  • 人教版三年级下册数学期中测试卷(综合卷).docx人教版三年级下册数学期中测试卷(综合卷).docx
  • 人教版三年级下册数学期中测试卷(精选题).docx人教版三年级下册数学期中测试卷(精选题).docx
  • 人教版三年级下册数学期中测试卷(精练).docx人教版三年级下册数学期中测试卷(精练).docx
  • 人教版三年级下册数学期中测试卷(突破训练).docx人教版三年级下册数学期中测试卷(突破训练).docx
  • 人教版三年级下册数学期中测试卷(研优卷).docx人教版三年级下册数学期中测试卷(研优卷).docx
  • 人教版三年级下册数学期中测试卷(真题汇编).docx人教版三年级下册数学期中测试卷(真题汇编).docx
  • 人教版三年级下册数学期中测试卷(模拟题).docx人教版三年级下册数学期中测试卷(模拟题).docx
  • 人教版三年级下册数学期中测试卷(有一套).docx人教版三年级下册数学期中测试卷(有一套).docx
  • 人教版三年级下册数学期中测试卷(易错题).docx人教版三年级下册数学期中测试卷(易错题).docx
  • 人教版三年级下册数学期中测试卷(巩固).docx人教版三年级下册数学期中测试卷(巩固).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1