27.2.3相似三角形应用举例学案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 27.2 相似 三角形 应用 举例
- 资源描述:
-
1、27.2 相似三角形27.2.3 相似三角形应用举例学习目标:1. 能够利用相似三角形的知识,求出不能直接测量的物体的高度和宽度. (重点)2. 进一步了解数学建模思想,能够将实际问题转化为相似三角形的数学模型,提高分析问题、解决问题的能力. (难点) 自主学习一、知识链接据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.你知道他是怎么测量的吗?合作探究一、 要点探究探究点1:利用相似三角形测量高度【典例精析】例1 如图,木杆 EF 长 2 m,它的影长 FD 为3 m,测得 OA 为 201 m,求金
2、字塔的高度 BO.【要点归纳】测高方法一:测量不能到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决. 表达式:物1高 :物2高 = 影1长 :影2长【针对训练】1. 如图,要测量旗杆 AB 的高度,可在地面上竖一根竹竿 DE,测量出 DE 的长以及 DE 和 AB 在同一时刻下地面上的影长即可,则下面能用来求AB长的等式是( ) A B C D 第1题图 第2题图2. 如图,九年级某班数学兴趣小组的同学想利用所学数学知识测量学校旗杆的高度,当身高 1.6 米的楚阳同学站在 C 处时,他头顶端的影子正好与旗杆顶端的影子重合,同一时刻,其他成员测得 AC = 2 米,AB =
3、 10 米,则旗杆的高度是_米思考 还可以有其他测量方法吗?【要点归纳】测高方法二:测量不能到达顶部的物体的高度,也可以利用“镜子的反射原理”去解决. 【针对训练】如图是小明设计用手电来测量某古城墙高度的示意图,点 P 处放一水平的平面镜,光线从点 A出发经平面镜反射后,刚好射到古城墙的顶端 C 处,已知 AB = 2 米,且测得 BP = 3 米,DP = 12 米,那么该古城墙的高度是 ( )A. 6米 B. 8米 C. 18米 D. 24米探究点2:利用相似三角形测量宽度例2 如图,为了估算河的宽度,我们可以在河对岸选定一个目标点 P,在近岸取点 Q 和 S,使点 P,Q,S共线且直线
4、PS 与河垂直,接着在过点 S 且与 PS 垂直的直线 a 上选择适当的点 T,确定 PT 与过点 Q 且垂直 PS 的直线 b 的交点 R. 已知测得QS = 45 m,ST = 90 m,QR = 60 m,请根据这些数据,计算河宽 PQ.例3 如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点 A,再在河的这一边选点 B 和 C,使 ABBC,然后,再选点 E,使 EC BC ,用视线确定 BC 和 AE 的交点 D此时如果测得 BD80m,DC30m,EC24m,求两岸间的大致距离 AB【要点归纳】测量如河宽等不易直接测量的物体的宽度,常构造相似三角形求解.探究点3:利用相似解
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
新教材2021-2022学年人教版语文选择性必修上册课件:第一单元 2长征胜利万岁大战中的插曲 .ppt
