分享
分享赚钱 收藏 举报 版权申诉 / 13

类型8.5 分布列与其他知识的综合运用(精讲)(学生版).docx

  • 上传人:a****
  • 文档编号:777599
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:13
  • 大小:439.89KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    8.5 分布列与其他知识的综合运用精讲学生版 分布 与其 知识 综合 运用 学生
    资源描述:

    1、8.5 分布列与其他知识的综合运用(精讲)考点一 利用均值做决策【例1】(2023河南校联考模拟预测)某水果店的草莓每盒进价20元,售价30元,草莓保鲜度为两天,若两天之内未售出,以每盒10元的价格全部处理完.店长为了决策每两天的进货量,统计了本店过去40天草莓的日销售量(单位:十盒),获得如下数据:日销售量/十盒78910天数812164假设草莓每日销量相互独立,且销售量的分布规律保持不变,将频率视为概率.(1)记每两天中销售草莓的总盒数为X(单位:十盒),求X的分布列和数学期望;(2)以两天内销售草莓获得利润较大为决策依据,在每两天进16十盒,17十盒两种方案中应选择哪种?【一隅三反】1(

    2、2023重庆统考模拟预测)某地区由于农产品出现了滞销的情况,从而农民的收入减少,很多人开始在某直播平台销售农产品并取得了不错的销售量.有统计数据显示2022年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示,若将销售主播按照年龄分为“年轻人”(20岁39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,且“经常使用直播销售用户”中有是“年轻人”. (1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的

    3、调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成22列联表,依据小概率值的独立性检验,能否认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2023年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售、根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不是不赚,且这三种情况发生的概率分别为,;方案二:线上直播销售,根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不

    4、赚,且这三种情况发生的概率分别为,.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828其中,2(2023四川绵阳统考模拟预测)新高考数学试卷中的多项选择题,给出的4个选项中有2个以上选项是正确的,每一道题考生全部选对得5分. 对而不全得2分,选项中有错误得0分. 设一套数学试卷的多选题中有2个选项正确的概率为,有3个选项正确的概率为,没有4个选项都正确的(在本问题中认为其概率为0). 在一次模拟考

    5、试中:(1)小明可以确认一道多选题的选项A是错误的,从其余的三个选项中随机选择2个作为答案,若小明该题得5分的概率为,求;(2)小明可以确认另一道多选题的选项A是正确的,其余的选项只能随机选择. 小明有三种方案:只选A不再选择其他答案;从另外三个选项中再随机选择1个,共选2个;从另外三个选项中再随机选择2个,共选3个. 若,以最后得分的数学期望为决策依据,小明应该选择哪个方案?考点二 概率与函数导数的综合【例2】(2023海南海南中学校考模拟预测)根据社会人口学研究发现,一个家庭有个孩子的概率模型为:1230(其中)每个孩子的性别是男孩还是女孩的概率均为,且相互独立,事件表示一个家庭有个孩子,

    6、事件B表示一个家庭的男孩比女孩多(若一个家庭恰有一个男孩,则该家庭男孩多).(1)若,求,并根据全概率公式求;(2)是否存在值,使得,请说明理由.【一隅三反】1(2023湖北武汉华中师大一附中校考模拟预测)2021年春节前,受疫情影响,各地鼓励外来务工人员选择就地过年某市统计了该市4个地区的外来务工人数与就地过年人数(单位:万),得到如下表格:区区区区外来务工人数万3456就地过年人数万2.5344.5(1)请用相关系数说明与之间的关系可用线性回归模型拟合,并求关于的线性回归方程和A区的残差(2)假设该市政府对外来务工人员中选择就地过年的每人发放1000元补贴若该市区有2万名外来务工人员,根据

    7、(1)的结论估计该市政府需要给区就地过年的人员发放的补贴总金额;若区的外来务工人员中甲、乙选择就地过年的概率分别为,其中,该市政府对甲、乙两人的补贴总金额的期望不超过1400元,求的取值范围参考公式:相关系数,回归方程中斜率和截距的最小二乘估计公式分别为2(2023湖北武汉统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,表示选

    8、取的人中来自该中学的人数,求的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为,且,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?3(2023福建福州福州四中校考模拟预测)已知甲同学计划从某天开始的连续四天内,每天从座位充足的两间教室中选择一间用于自习.若其每天的选择均相互独立,且任意一天选择教室的概率为,任意连续两天选择相同教室的概率为.(1)求的取值范围;

    9、(2)若,记甲在该四天内连续选择相同教室自习的天数最大值为随机变量(若甲任意连续两天都不在相同教室自习,则),求的分布列和数学期望.考点三 概率与数列的结合【例3-1】(2023山西运城山西省运城中学校校考二模)甲乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3乙胜的概率为0.2.(1)第一局比赛后,甲的筹码个数记为,求的分布列和期望;(2)求四局比赛后,比赛结束的概率;(3)若表示“在甲所得筹码为枚时,最终甲获胜的概率”,则.证明:为等比数列

    10、.【例3-2】(2023福建漳州统考模拟预测)某科研单位研制出某型号科考飞艇,一艘该型号飞艇最多只能执行次科考任务,一艘该型号飞艇第1次执行科考任务,能成功返航的概率为,若第次执行科考任务能成功返航,则执行第次科考任务且能成功返航的概率也为,否则此飞艇结束科考任务.一艘该型号飞艇每次执行科考任务,若能成功返航,则可获得价值为万元的科考数据,且“”的概率为0.8,“”的概率为0.2;若不能成功返航,则此次科考任务不能获得任何科考数据.记一艘该型号飞艇共可获得的科考数据的总价值为万元.(1)若,求的分布列;(2)求(用和表示).【一隅三反】1(2023湖北黄冈浠水县第一中学校考三模)甲、乙两人组团

    11、参加答题挑战赛,规定:每一轮甲、乙各答一道题,若两人都答对,该团队得1分;只有一人答对,该团队得0分;两人都答错,该团队得1分假设甲、乙两人答对任何一道题的概率分别为,(1)记X表示该团队一轮答题的得分,求X的分布列及数学期望;(2)假设该团队连续答题n轮,各轮答题相互独立记表示“没有出现连续三轮每轮得1分”的概率,求a,b,c;并证明:答题轮数越多(轮数不少于3),出现“连续三轮每轮得1分”的概率越大2(2023安徽滁州校考模拟预测)国学小组有编号为1,2,3,的位同学,现在有两个选择题,每人答对第一题的概率为、答对第二题的概率为,每个同学的答题过程都是相互独立的,比赛规则如下:按编号由小到

    12、大的顺序依次进行,第1号同学开始第1轮出赛,先答第一题;若第号同学未答对第一题,则第轮比赛失败,由第号同学继继续比赛;若第号同学答对第一题,则再答第二题,若该生答对第二题,则比赛在第轮结束;若该生未答对第二题,则第轮比赛失败,由第号同学继续答第二题,且以后比赛的同学不答第一题;若比赛进行到了第轮,则不管第号同学答题情况,比赛结束(1)令随机变量表示名同学在第轮比赛结束,当时,求随机变量的分布列;(2)若把比赛规则改为:若第号同学未答对第二题,则第轮比赛失败,第号同学重新从第一题开始作答令随机变量表示名挑战者在第轮比赛结束求随机变量的分布列;证明:单调递增,且小于33(2023湖南长沙湖南师大附

    13、中校考一模)第22届世界杯于2022年11月21日到12月18日在卡塔尔举办在决赛中,阿根廷队通过点球战胜法国队获得冠军(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左中右三个方向射门,门将也会等可能地随机选择球门的左中右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲乙丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都

    14、能接住记第n次传球之前球在甲脚下的概率为pn,易知试证明:为等比数列;设第n次传球之前球在乙脚下的概率为qn,比较p10与q10的大小考点四 概率证明【例4】(2023浙江校联考模拟预测)某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球

    15、的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记为甲、乙在一天中选择体育锻炼项目的个数,求的分布列和数学期望;(3)假设A表示事件“室外温度低于10度”,表示事件“某学生去打乒乓球”,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:.【一隅三反】1(2023湖南益阳安化县第二中学校考三模)2022年北京冬奥会圆满落幕,随后多所学校掀起了“雪上运动”的热潮.为了解学生对“雪上运动”的喜爱程度,某学校从全校学生中随机抽取200名学生进行问卷调查,得到以下信息:抽取的学生中,男生占的比例为60%;抽取的学生中,不

    16、喜欢雪上运动的学生占的比例为45%.抽取的学生中,喜欢雪上运动的男生比喜欢雪上运动的女生多50人.(1)完成22列联表,依据小概率值=0.001的独立性检验,能否认为是否喜欢雪上运动与性别有关联?喜欢雪上运动不喜欢雪上运动合计男生女生合计(2)(i)从随机抽取的这200名学生中采用分层抽样的方法抽取20人,再从这20人中随机抽取3人.记事件A=“至少有2名是男生”,事件B=“至少有2名喜欢雪上运动的男生”,事件C=“至多有1名喜欢雪上运运的女生”.试分别计算和的值.(ii)根据第(i)问中的结果,分析与的大小关系.参考公式及数据,.0.100.050.0100.0012.7063.8416.6

    17、3510.8282(2023黑龙江哈尔滨哈尔滨三中校考模拟预测)2022年11月20日,卡塔尔足球世界杯正式开幕,世界杯上的中国元素随处可见从体育场建设到电力保障,从赛场内的裁判到赛场外的吉祥物都是中国制造,为卡塔尔世界杯提供了强有力的支持国内也再次掀起足球热潮某地足球协会组建球队参加业余比赛,该足球队教练组为了考查球员甲对球队的贡献,作出如下数据统计(甲参加过的比赛均分出了输赢):球队输球球队赢球总计甲参加23032甲未参加81018总计104050(1)根据小概率值的独立性检验,能否认为该球队赢球与甲球员参赛有关联;(2)从该球队中任选一人,A表示事件“选中的球员参赛”,B表示事件“球队输球”与的比值是选中的球员参赛对球队贡献程度的一项度量指标,记该指标为R证明:;利用球员甲数据统计,给出,的估计值,并求出R的估计值附:参考数据:a0.050.010.0050.0013.8416.6357.87910.828

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:8.5 分布列与其他知识的综合运用(精讲)(学生版).docx
    链接地址:https://www.ketangku.com/wenku/file-777599.html
    相关资源 更多
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习8.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习8.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习7.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习7.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习6.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习6.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习5.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习5.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习4.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习4.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习3.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习3.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习2.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习2.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习12.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习12.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习11.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习11.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习1.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习1.docx
  • 人教版新目标七年级下册英语暑假词汇、语法填空专项练习.docx人教版新目标七年级下册英语暑假词汇、语法填空专项练习.docx
  • 人教版新目标七年级上册英语同步测试: Unit 6 Section A.docx人教版新目标七年级上册英语同步测试: Unit 6 Section A.docx
  • 人教版新目标七年级上册英语同步测试: Unit 4 Section A.docx人教版新目标七年级上册英语同步测试: Unit 4 Section A.docx
  • 人教版新目标2018年中考英语阅读理解复习练习.docx人教版新目标2018年中考英语阅读理解复习练习.docx
  • 人教版新教材高一第一学期数学期末模拟试卷(三).docx人教版新教材高一第一学期数学期末模拟试卷(三).docx
  • 人教版数学(三)上册期末总复习重难点突破卷3 含答案.docx人教版数学(三)上册期末总复习重难点突破卷3 含答案.docx
  • 人教版数学(三)上册期末总复习重难点突破卷2 含答案.docx人教版数学(三)上册期末总复习重难点突破卷2 含答案.docx
  • 人教版数学(三)上册期末总复习重难点突破卷1 含答案.docx人教版数学(三)上册期末总复习重难点突破卷1 含答案.docx
  • 人教版数学小学二年级上册重点题型专项练习汇总.docx人教版数学小学二年级上册重点题型专项练习汇总.docx
  • 人教版数学小学二年级上册重点题型专项练习新版.docx人教版数学小学二年级上册重点题型专项练习新版.docx
  • 人教版数学小学二年级上册重点题型专项练习完美版.docx人教版数学小学二年级上册重点题型专项练习完美版.docx
  • 人教版数学小学二年级上册重点题型专项练习完整版.docx人教版数学小学二年级上册重点题型专项练习完整版.docx
  • 人教版数学小学二年级上册重点题型专项练习各版本.docx人教版数学小学二年级上册重点题型专项练习各版本.docx
  • 人教版数学小学二年级上册重点题型专项练习及参考答案1套.docx人教版数学小学二年级上册重点题型专项练习及参考答案1套.docx
  • 人教版数学小学二年级上册重点题型专项练习及参考答案.docx人教版数学小学二年级上册重点题型专项练习及参考答案.docx
  • 人教版数学小学二年级上册重点题型专项练习参考答案.docx人教版数学小学二年级上册重点题型专项练习参考答案.docx
  • 人教版数学小学二年级上册无纸笔测试题.docx人教版数学小学二年级上册无纸笔测试题.docx
  • 人教版数学小学三年级上册重点题型专项练习(重点班).docx人教版数学小学三年级上册重点题型专项练习(重点班).docx
  • 人教版数学小学三年级上册重点题型专项练习(达标题).docx人教版数学小学三年级上册重点题型专项练习(达标题).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1