《创新设计-课堂讲义》2016-2017学年高中数学北师大版选修1-2练习:第三章 推理与证明 2 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计-课堂讲义
- 资源描述:
-
1、明目标、知重点1.理解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的区别和联系1在数学中,证明一个命题,就是根据命题的条件和已知的定义、公理、定理,利用演绎推理的法则将命题推导出来2三段论一般模式常用格式大前提一般性道理M是P小前提研究对象的特殊情况S是M结论由大前提和小前提作出的判断S是P探究点一演绎推理与三段论思考1分析下面几个推理,找出它们的共同点(1)所有的金属都能导电,铀是金属,所以铀能够导电;(2)一切奇数都不能被2整除,(21001)是奇数,所以(21001)不能被2整除;(3)三角函数都是周期函数,tan 是三角函数,
2、因此tan 是周期函数;(4)两条直线平行,同旁内角互补如果A与B是两条平行直线的同旁内角,那么AB180.答问题中的推理都是从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理叫演绎推理思考2演绎推理有什么特点?答演绎推理是从一般到特殊的推理演绎推理的前提是一般性原理,结论是蕴含于前提之中的个别、特殊事实思考3演绎推理的结论一定正确吗?答在演绎推理中,前提和结论之间存在必然的联系,只要前提是真实的,推理形式是正确的,结论必定是正确的思考4演绎推理一般是怎样的模式?答“三段论”是演绎推理的一般模式,它包括:(1)大前提一般性道理;(2)小前提研究对象的特殊情况;(3)结论由大前提和小前
3、提作出的判断例1将下列演绎推理写成三段论的形式(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;(2)等腰三角形的两底角相等,A,B是等腰三角形的底角,则AB;(3)通项公式为an2n3的数列an为等差数列解(1)平行四边形的对角线互相平分,大前提菱形是平行四边形,小前提菱形的对角线互相平分结论(2)等腰三角形的两底角相等,大前提A,B是等腰三角形的底角,小前提AB.结论(3)数列an中,如果当n2时,anan1为常数,则an为等差数列,大前提通项公式为an2n3时,若n2,则anan12n32(n1)32(常数),小前提通项公式为an2n3的数列an为等差数列结论
4、反思与感悟用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系有时可省略小前提,有时甚至也可把大前提与小前提都省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提跟踪训练1把下列推断写成三段论的形式:(1)因为ABC三边的长依次为3,4,5,所以ABC是直角三角形;(2)函数y2x5的图像是一条直线;(3)ysin x(xR)是周期函数解(1)一条边的平方等于其他两条边平方和的三角形是直角三角形,大前提ABC三边的长依次为3,4,5,而324252,小前提ABC是直角三角形结论
5、(2)一次函数ykxb(k0)的图像是一条直线,大前提函数y2x5是一次函数,小前提函数y2x5的图像是一条直线结论(3)三角函数是周期函数,大前提ysin x(xR)是三角函数,小前提ysin x(xR)是周期函数结论 探究点二三段论的错误探究例2指出下列推理中的错误,并分析产生错误的原因:(1)整数是自然数,大前提3是整数,小前提3是自然数结论(2)常函数的导函数为0,大前提函数f(x)的导函数为0,小前提f(x)为常函数结论(3)无限不循环小数是无理数,大前提(0.333 33)是无限不循环小数,小前提是无理数结论解(1)结论是错误的,原因是大前提错误自然数是非负整数(2)结论是错误的,
6、原因是推理形式错误大前提指出的一般性原理中结论为“导函数为0”,因此演绎推理的结论也应为“导函数为0”(3)结论是错误的,原因是小前提错误.(0.333 33)是循环小数而不是无限不循环小数反思与感悟演绎推理的结论是否正确,取决于该推理的大前提、小前提和推理形式是否全部正确,因此,分析推理中的错因实质就是判断大前提、小前提和推理形式是否正确跟踪训练2指出下列推理中的错误,并分析产生错误的原因:(1)因为中国的大学分布在中国各地,大前提北京大学是中国的大学,小前提所以北京大学分布在中国各地结论(2)因为所有边长都相等的凸多边形是正多边形,大前提而菱形是所有边长都相等的凸多边形,小前提所以菱形是正
7、多边形结论解(1)推理形式错误大前提中的M是“中国的大学”,它表示中国的各所大学,而小前提中M虽然也是“中国的大学”,但它表示中国的一所大学,二者是两个不同的概念,故推理形式错误(2)结论是错误的,原因是大前提错误因为所有边长都相等,内角也都相等的凸多边形才是正多边形探究点三三段论的应用例3如图,在锐角三角形ABC中,ADBC,BEAC,D,E是垂足,求证:AB的中点M到点D,E的距离相等证明(1)因为有一个内角是直角的三角形是直角三角形,大前提在ABD中,ADBC,即ADB90,小前提所以ABD是直角三角形结论同理,AEB也是直角三角形。(2)因为直角三角形斜边上的中线等于斜边的一半,大前提
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-787695.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
