分享
分享赚钱 收藏 举报 版权申诉 / 12

类型《新步步高》2016-2017学年高二数学人教A必修5学案:第一章 数列 WORD版含解析.docx

  • 上传人:a****
  • 文档编号:792580
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:12
  • 大小:2.24MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    新步步高 新步步高2016-2017学年高二数学人教A必修5学案:第一章 数列 WORD版含解析 步步高 2016 2017 学年 高二数 学人 必修 第一章 WORD 解析
    资源描述:

    1、1正弦定理的一个推论及应用在初学正弦定理时,若问同学们这样一个问题:在ABC中,若sin Asin B,则A与B的大小关系怎样?那么几乎所有的同学都会认为A与B的大小关系不确定若再问:在ABC中,若AB,则sin A与sin B的大小关系怎样?仍然会有很多同学回答大小关系不确定鉴于此,下面我们讲讲这个问题1结论例1在ABC中,sin Asin BAB.分析题中条件简单,不易入手但既在三角形中,何不尝试用联系边角的正弦定理?证明因为sin Asin B2Rsin A2Rsin B(其中R为ABC外接圆的半径),根据正弦定理变式a2Rsin A,b2Rsin B(其中a,b分别为A,B的对边),可

    2、得sin Asin Bab,再由平面几何定理“大角对大边,小角对小边”,可得abAB.所以sin Asin BAB.2结论的应用例2在ABC中,A45,a4,b2,求B.分析在遇到这样的问题时,有的同学一看,这不正好用正弦定理嘛,于是就直接由正弦定理得B30或B150.其实这是错误的!错在哪儿?我们只需由上述结论即可发现解由正弦定理得,sin B,又sin Bsin A,所以Bsin B,所以CB,所以C有两解(1)当C60时,有A90;(2)当C120时,有A30.点评除此之外,本题也可以利用余弦定理来求解.2三角形定“形”记根据边角关系判断三角形的形状是一类热点问题解答此类问题,一般需先运

    3、用正、余弦定理转化已知的边角关系,再进一步判断三角形的形状,这种转化一般有两个通道,即化角为边或化边为角下面例析这两个通道的应用1通过角之间的关系定“形”例1在ABC中,已知2sin Acos Bsin C,那么ABC一定是()A直角三角形 B等腰三角形C等腰直角三角形 D正三角形分析通过三角形恒等变换和正弦、余弦定理,把条件式转化,直至能确定两角(边)的关系为止,即可判断三角形的形状解析方法一利用正弦定理和余弦定理2sin Acos Bsin C可化为2ac,即a2c2b2c2,即a2b20,即a2b2,故ab.所以ABC是等腰三角形故选B.方法二因为在ABC中,ABC,即C(AB),所以s

    4、in Csin(AB)由2sin Acos Bsin C,得2sin Acos Bsin Acos Bcos Asin B,即sin Acos Bcos Asin B0,即sin (AB)0.又因为AB,所以AB0,即AB.所以ABC是等腰三角形,故选B.答案B点评根据角的三角函数之间的关系判断三角形的形状,一般需通过三角恒等变换,求出角(边)之间的关系2通过边之间的关系定“形”例2在ABC中,若,则ABC是()A锐角三角形B直角三角形C等腰三角形D等腰三角形或直角三角形分析先运用正弦定理化角为边,根据边之间的关系即可判断三角形的形状解析在ABC中,由正弦定理,可得,整理得a(ac)b(bc)

    5、,即a2b2acbc0,(ab)(abc)0.因为abc0,所以ab0,即ab,所以ABC是等腰三角形故选C.答案C点评本题也可化边为角,但书写复杂,式子之间的关系也不易发现.3细说三角形中解的个数解三角形时,处理“已知两边及其一边的对角,求第三边和其他两角”问题需判断解的个数,这是一个比较棘手的问题下面对这一问题进行深入探讨1出现问题的根源我们作图来直观地观察一下不妨设已知ABC的两边a,b和角A,作图步骤如下:先做出已知角A,把未知边c画为水平的,角A的另一条边为已知边b;以b边的不是A点的另外一个端点为圆心,边a为半径作圆C;观察圆C与边c交点的个数,便可得此三角形解的个数显然,当A为锐

    6、角时,有如图所示的四种情况:当A为钝角或直角时,有如图所示的两种情况:根据上面的分析可知,由于a,b长度关系的不同,导致了问题有不同个数的解若A为锐角,只有当a不小于bsin A时才有解,随着a的增大得到的解的个数也是不相同的当A为钝角时,只有当a大于b时才有解2解决问题的策略(1)正弦定理法已知ABC的两边a,b和角A,求B.根据正弦定理,可得sin B.若sin B1,三角形无解;若sin B1,三角形有且只有一解;若0sin B1,B有两解,再根据a,b的大小关系确定A,B的大小关系(利用大边对大角),从而确定B的两个解的取舍(2)余弦定理法已知ABC的两边a,b和角A,求c.利用余弦定

    7、理可得a2b2c22bccos A,整理得c22bccos Aa2b20.适合问题的上述一元二次方程的解c便为此三角形的解(3)公式法当已知ABC的两边a,b和角A时,通过前面的分析可总结三角形解的个数的判断公式如下表:A90A90ababababsin Aabsin Aabsin A一解二解一解无解一解无解三、实例分析例在ABC中,已知A45,a2,b(其中角A,B,C的对边分别为a,b,c),试判断符合上述条件的ABC有多少个?分析此题为“已知两边和其中一边的对角”解三角形的问题,可以利用上述办法来判断ABC解的情况解方法一由正弦定理,可得sin Bsin 45b,所以AB,故B30,符合

    8、条件的ABC只有一个方法二由余弦定理得22c2()22ccos 45,即c22c20,解得c1.而1b,故符合条件的ABC只有一个4走出解三角形的误区解三角形是高中数学的重要内容,也是高考的一个热点由于我们对三角公式比较熟悉,做题时比较容易入手但是公式较多且性质灵活,解题时稍有不慎,常会出现增解、错解现象,其根本原因是对题设中的隐含条件挖掘不够下面结合例子谈谈解三角形时,题目中隐含条件的挖掘1忽视构成三角形的条件而致误例1已知钝角三角形的三边ak,bk2,ck4,求k的取值范围错解cba且ABC为钝角三角形,C为钝角由余弦定理得cos C0.k24k120,解得2k0.综上所述,0kk4.即k

    9、2而不是k0.正解cba,且ABC为钝角三角形,C为钝角由余弦定理得cos C0.k24k120,解得2kk4,k2,综上所述,k的取值范围为2k0,03.点拨忽略了三角形内角和为180,及角A、B的取值范围,从而导致取值范围求错正解由正弦定理得cos 2A2cos2A4cos2A1.ABC180,B3A.AB4A180,0A45.cos A1,14cos2 A13,13.温馨点评解三角问题,角的取值范围至关重要一些问题,角的取值范围隐含在题目的条件中,若不仔细审题,深入挖掘,往往疏漏而导致解题失败5正、余弦定理三应用有些题目,表面上看不能利用正、余弦定理解决,但若能构造适当的三角形,就能利用

    10、两定理,题目显得非常容易,本文剖析几例1平面几何中的长度问题例1如图,在梯形ABCD中,CD2,AC,BAD60,求梯形的高分析如图,过点D作DEAB于点E,则DE为所求的高由BAD60,知ADC120,又边CD与AC的长已知,故ACD为已知两边和其中一边的对角,可解三角形解RtADE,需先求AD的长,这只需在ACD中应用余弦定理解由BAD60,得ADC120,在ACD中,由余弦定理得AC2AD2CD22ADCDcosADC,即19AD242AD2,解得AD3或AD5(舍去)在ADE中,DEADsin 60.点评依据余弦定理建立方程是余弦定理的一个妙用,也是函数与方程思想在解三角形中的体现2求

    11、范围例2如图,等腰ABC中,底边BC1,ABC的平分线BD交AC于点D,求BD的取值范围(注:0x1时,f(x)x为增函数)分析把BD的长表示为ABC的函数,转化为求函数的值域解设ABC.因为ABCC,所以A1802,BDCAABD1802180,因为BC1,在BCD中,由正弦定理得BD,因为045,所以cos 1,而当cos 增大时,BD减小,且当cos 时,BD;当cos 1时,BD,故BD的取值范围是.点评本题考查:(1)三角知识、正弦定理以及利用函数的单调性求值域的方法;(2)数形结合、等价转化等思想3判断三角形的形状例3在ABC中,角A,B,C的对边分别为a,b,c,若k,(kR)(

    12、1)判断ABC的形状;(2)若c,求k的值解(1)cbcos A,cacos B.又,bccos Aaccos B,bcos Aacos B.方法一sin Bcos Asin Acos B,即sin Acos Bcos Asin B0,sin(AB)0,AB,AB.ABC为等腰三角形方法二利用余弦定理将角化为边,bcos Aacos B,bab2c2a2a2c2b2,a2b2,ab.ABC为等腰三角形(2)由(1)知:ab.bccos Abck,c,k1.6测高、测距精彩汇1测量高度问题,是解三角形实际应用问题中的一类热点问题,正弦定理和余弦定理是解决这类问题的两个得力工具,下面举例说明例1如

    13、图,某人欲测量某建筑物的高度BC,在A处测得建筑物顶端C的仰角为30,然后,向建筑物方向前进200 m到达D处,在D处测得C的仰角为75,则建筑物的高度为()A50(1) m B50(1) mC50(1) m D50() m分析先求出ACD,然后在ACD中运用正弦定理求出CD,最后在RtBCD中求BC.解析依题意,可得CAB30,CDB75,所以ACD45.在ACD中,由正弦定理得CD100(m)所以BCCDsin 7510050(1)(m)故选A.答案A点评本题的测高方案:先在地面上选定两点,然后测量这两点之间的距离和从两点看被测物体顶端的仰角,进而用正弦定理求得高度其中的解三角形问题属于已

    14、知两角和一边解三角形问题,适合用正弦定理求解例2如图,在100 m高的山顶A处,测得一建筑物CD底部和顶部的俯角分别为60和30,则建筑物的高度为_ m.分析先在RtABC中,求出AC,然后在ADC中,运用正弦定理求CD.解析在RtABC中,AC(m)在ADC中,ADC120,CAD30,由正弦定理,得CD(m)故填.答案点评本题的测高方案:在某一高度测量被测物体的顶部和底部的俯角,然后用正弦定理求高度其中的解三角形问题也属于已知两角和一边求其他角和边的三角形问题例3如图,CD是一座铁塔,线段AB和塔底D在同一水平地面上,在A,B两点测得塔顶C的仰角分别为60,45,又测得AB24 m,ADB

    15、30,则此铁塔的高度为()A18 m B120 mC32 m D24 m分析先设出塔高,用它分别表示出AD,BD,然后在ABD中,运用余弦定理列方程,解之即得塔高解析设塔高为h,因为CAD60,CBD45,所以AD,BDh.在ABD中,由余弦定理得2422h22hcos 30,解得h24 m故选D.答案D点评本题的测高方案:先测出地面上两点间的距离,然后在这两点分别测出被测物体顶部的仰角及两点相对于被测物体底部的张角,再用余弦定理求高度2实际测量中的距离问题是高考常考知识点之一下面我们通过第一道例题找出规律,再通过第二道例题灵活运用,一起来探寻距离问题如何求解例4如图,一渔船在海上由西向东航行

    16、,在A处望见灯塔C在船的东北方向,若船速为每小时30 n mile,半小时后在B处望见灯塔在船的北偏东30,当船行至D处望见灯塔在船的西北方向时,求A、D两点之间的距离(精确到0.1 n mile)分析对于实际问题,我们需要画出示意图,由图知,要求ACD的边AD,此时就转化成解三角形问题了解在ABC中,AB300.515(n mile),CAB45,ABC120,所以ACB15,由正弦定理,可得,所以AC.在ACD中,CAD45,CDA45,所以ACD90,由正弦定理,得AD71.0(n mile)答A、D两点之间的距离约为71.0 n mile.点评第一步:画出示意图;第二步:构建三角形,把

    17、实际问题中的长度、角度做为三角形相应的边和角;第三步:解三角形例5如图,为了测量河对岸(不可到达)A、B两点之间的距离,在河的这边测得CD200 m,ACD80,BCD35,CDA40,CDB70,求A、B两点间的距离(精确到1 m)分析ACD和BCD都是已知两角一边,可用正弦定理分别求出AC和BC,再在ABC中用余弦定理求AB的长解在ACD中,CD200,ACD80,CDA40,所以CAD60.由正弦定理,得AC148.4(m)在BCD中,BCD35,CDB70,所以CBD75.由正弦定理得BC194.6(m)在ABC中,ACB803545,由余弦定理得,AB2AC2BC22ACBCcosACB148.42194.622148.4194.6cos 4519 051.2,所以AB138(m)答A、B两点的距离约为138 m.点评分析出题目中几个点的相对位置,根据已知构造出三角形,明确三角形的已知边角和所求边角

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《新步步高》2016-2017学年高二数学人教A必修5学案:第一章 数列 WORD版含解析.docx
    链接地址:https://www.ketangku.com/wenku/file-792580.html
    相关资源 更多
  • 八年级物理上册沪科版习题:期末检测卷.docx八年级物理上册沪科版习题:期末检测卷.docx
  • 八年级物理上册江西人教版习题:第四章检测卷.docx八年级物理上册江西人教版习题:第四章检测卷.docx
  • 八年级物理上册江西人教版习题:第六章检测卷.docx八年级物理上册江西人教版习题:第六章检测卷.docx
  • 八年级物理上册江西人教版习题:期末检测卷(一).docx八年级物理上册江西人教版习题:期末检测卷(一).docx
  • 八年级物理上册江西人教版习题:期中检测卷.docx八年级物理上册江西人教版习题:期中检测卷.docx
  • 八年级物理上册机械运动与声现象综合测试题无答案新版新人教版.docx八年级物理上册机械运动与声现象综合测试题无答案新版新人教版.docx
  • 八年级物理上册期末测评新版北师大版.docx八年级物理上册期末测评新版北师大版.docx
  • 八年级物理上册人教版(通用)习题:第六章检测卷.docx八年级物理上册人教版(通用)习题:第六章检测卷.docx
  • 八年级物理上册人教版(通用)习题:第五章检测卷.docx八年级物理上册人教版(通用)习题:第五章检测卷.docx
  • 八年级物理上册人教版(通用)习题:第一章检测卷.docx八年级物理上册人教版(通用)习题:第一章检测卷.docx
  • 八年级物理上册人教版(通用)习题:期末检测卷(三).docx八年级物理上册人教版(通用)习题:期末检测卷(三).docx
  • 八年级物理上册人教版(贵州专版)习题:第四章检测卷.docx八年级物理上册人教版(贵州专版)习题:第四章检测卷.docx
  • 八年级物理上册人教版(贵州专版)习题:第五章检测卷.docx八年级物理上册人教版(贵州专版)习题:第五章检测卷.docx
  • 八年级物理上册人教版(贵州专版)习题:第三章检测卷.docx八年级物理上册人教版(贵州专版)习题:第三章检测卷.docx
  • 八年级物理上册人教版(贵州专版)习题:第一章检测卷.docx八年级物理上册人教版(贵州专版)习题:第一章检测卷.docx
  • 八年级物理上册人教版(贵州专版)习题:期末检测卷(一).docx八年级物理上册人教版(贵州专版)习题:期末检测卷(一).docx
  • 八年级物理上册人教版(湖北专版)习题:第六章检测卷.docx八年级物理上册人教版(湖北专版)习题:第六章检测卷.docx
  • 八年级物理上册人教版(湖北专版)习题:第五章检测卷.docx八年级物理上册人教版(湖北专版)习题:第五章检测卷.docx
  • 八年级物理上册人教版(湖北专版)习题:期末检测卷(二).docx八年级物理上册人教版(湖北专版)习题:期末检测卷(二).docx
  • 八年级物理上册人教版(湖北专版)习题:期中检测卷.docx八年级物理上册人教版(湖北专版)习题:期中检测卷.docx
  • 八年级物理上册人教版习题:第五章检测卷.docx八年级物理上册人教版习题:第五章检测卷.docx
  • 八年级物理上册人教版习题:第二章检测卷.docx八年级物理上册人教版习题:第二章检测卷.docx
  • 八年级物理上册人教版习题:期末检测卷(二).docx八年级物理上册人教版习题:期末检测卷(二).docx
  • 八年级物理上册【声现象】易错点总结.docx八年级物理上册【声现象】易错点总结.docx
  • 八年级物理上册《第四单元 透镜及其应用》复习要点及自我检测题(无答案) 苏科版.docx八年级物理上册《第四单元 透镜及其应用》复习要点及自我检测题(无答案) 苏科版.docx
  • 八年级物理上册《第二单元 物态变化》复习要点及自我检测题(无答案) 苏科版.docx八年级物理上册《第二单元 物态变化》复习要点及自我检测题(无答案) 苏科版.docx
  • 八年级物理上册《第一章 机械运动》单元综合测试(2)(无答案) (新版)新人教版.docx八年级物理上册《第一章 机械运动》单元综合测试(2)(无答案) (新版)新人教版.docx
  • 八年级物理上册《第一章 机械运动》单元综合测试(1)(无答案) (新版)新人教版.docx八年级物理上册《第一章 机械运动》单元综合测试(1)(无答案) (新版)新人教版.docx
  • 八年级物理上册《第一章 声现象》自主训练题2(无答案) 苏科版.docx八年级物理上册《第一章 声现象》自主训练题2(无答案) 苏科版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1