【新教材精创】1.4.2 用空间向量研究距离、夹角问题(2)教学设计-人教A版高中数学选择性必修第一册.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材精创
- 资源描述:
-
1、1.4.2 用空间向量研究距离、夹角问题(2) 本节课选自2019人教A版高中数学选择性必修第一册第一章空间向量与立体几何,本节课主要学习运用空间向量解决计算空间角问题。在向量坐标化的基础上,将空间中线线角、线面角及二面角问题,首先转化为向量语言,进而运用向量的坐标表示,从而实现运用空间向量解决空间角问题,为学生学习立体几何提供了新的方法和新的观点,为培养学生思维提供了更广阔的空间。课程目标学科素养A.理解两异面直线所成角与它们的方向向量之间的关系,会用向量方法求两 异面直线所成角.B.理解直线与平面所成角与直线方向向量和平面法向量夹角之间的关系,会用向量方法求直线与平面所成角.C.理解二面角
2、大小与两个面法向量夹角之间的关系,会用向量方法求二面角的大小.1.数学抽象:向量语言表述空间角 2.逻辑推理:运用向量运算求解空间角的原理;3.数学运算:空间向量的坐标运算解决空间角问题.1.教学重点:理解运用向量方法求空间角的原理2.教学难点:掌握运用空间向量求空间角的方法多媒体教学过程教学设计意图核心素养目标一、情境导学地球绕太阳公转的轨道平面称为“黄道面”,黄道面与地球赤道面交角(二面角的平面角)为2326.黄道面与天球相交的大圆为“黄道”.黄道及其附近的南北宽9以内的区域称为黄道带,太阳及大多数行星在天球上的位置常在黄道带内.黄道带内有十二个星座,称为“黄道十二宫”.从春分(节气)点起
3、,每30便是一宫,并冠以星座名,如白羊座、狮子座、双子座等等,这便是星座的由来.问题:空间角包括哪些角?求解空间角常用的方法有哪些?答案:线线角、线面角、二面角; 传统方法和向量法.二、探究新知 1.利用向量方法求两异面直线所成角若两异面直线l1,l2所成角为,它们的方向向量分别为a,b,则有cos =|cos|=|ab|a|b| .特别提醒:不要将两异面直线所成的角与其方向向量的夹角等同起来,因为两异面直线所成角的范围是0,2,而两个向量夹角的范围是0,事实上,两异面直线所成的角与其方向向量的夹角是相等或互补的关系.1.若异面直线l1,l2的方向向量分别是a=(0,-2,-1),b=(2,0
4、,4),则异面直线l1与l2的夹角的余弦值等于()A.-25B.25C.-255D.255解析因为ab=-4,|a|=5,|b|=25,所以cos =|cos|=ab|a|b|=-410=25. 答案:B 2.利用向量方法求直线与平面所成角若直线l与平面所成的角为,直线l的方向向量为a,平面的法向量为n,则有sin =|cos|=|an|a|n|特别提醒:直线与平面所成的角等于其方向向量与平面法向量所成锐角的余角.2.若直线l的方向向量与平面的法向量的夹角等于120,则直线l与平面所成的角等于()A.120B.60 C.150 D.30 解析:因为直线l的方向向量与平面的法向量的夹角等于120
5、,所以它们所在直线的夹角为60,则直线l与平面所成的角等于90-60=30. 答案:D 3.利用向量方法求二面角(1)若二面角-l-的平面角的大小为,其两个面,的法向量分别为n1,n2, 则|cos |=|cos|= |n1n2|n1|n2| (2)二面角的大小还可以转化为两直线方向向量的夹角.在二面角-l-的两个半平面,内,各取一条与棱l垂直的直线,则当直线的方向向量的起点在棱上时,两个方向向量的夹角即为二面角的大小.特别提醒:由于二面角的取值范围是0,而两个面的法向量的方向无法从图形上直观确定,因此不能认为二面角的大小就是其两个面法向量夹角的大小,需要结合具体图形判断二面角是锐角还是钝角,
6、从而求得其大小.3.二面角-l-中,平面的一个法向量为n1=32,-12,-2,平面的一个法向量是n2=0,12,2,那么二面角-l-的大小等于()A.120 B.150 C.30或150 D.60或120 解析:设所求二面角的大小为, 则|cos |=|n1n2|n1|n2|=32,所以=30或150.答案:C 例1. 如图所示,在三棱柱ABC-A1B1C1中,AA1底面ABC,AB=BC=AA1,ABC=90,点E,F分别是棱AB,BB1的中点,试求直线EF和BC1所成的角.思路分析:建立空间直角坐标系,求出直线EF和BC1的方向向量的坐标,求它们的夹角即得直线EF和BC1所成的角.解:分
7、别以直线BA,BC,BB1为x,y,z轴,建立空间直角坐标系(如右图).设AB=1,则B(0,0,0),E12,0,0,F0,0,12,C1(0,1,1),所以EF=-12,0,12,BC1=(0,1,1).于是cos=BC1EF|BC1|EF|=12222=12,所以直线EF和BC1所成角的大小为60.1.利用空间向量求两异面直线所成角的步骤.(1)建立适当的空间直角坐标系.(2)求出两条异面直线的方向向量的坐标.(3)利用向量的夹角公式求出两直线方向向量的夹角.(4)结合异面直线所成角的范围得到两异面直线所成角.2.求两条异面直线所成的角的两个关注点.(1)余弦值非负:两条异面直线所成角的
8、余弦值一定为非负值,而对应的方向向量的夹角可能为钝角.(2)范围:异面直线所成角的范围是0,2,故两直线方向向量夹角的余弦值为负时,应取其绝对值.跟踪训练1 如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为.解析:以D为坐标原点,DA,DC,DD1所在直线为x轴,y轴,z轴建立空间直角坐标系Dxyz,设AB=1.则B(1,1,0),A1(1,0,2),A(1,0,0),D1(0,0,2),A1B=(0,1,-2), AD1=(-1,0,2),cos=A1BAD1|A1B|AD1|=-455=-45,故异面直线A1B与AD1所成角的余弦值为4
9、5. 答案:45例2.如图所示,四棱锥P-ABCD中,PA底面ABCD,ADBC,AB=AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN平面PAB;(2)求直线AN与平面PMN所成角的正弦值.思路分析:(1)线面平行的判定定理MN平面PAB.(2)利用空间向量计算平面PMN与AN方向向量的夹角直线AN与平面PMN所成角的正弦值.(1)证明:由已知得AM=23AD=2.如图,取BP的中点T,连接AT,TN,由N为PC的中点知TNBC,TN=12BC=2.又ADBC,故TNAM且TN=AM,所以四边形AMNT为平行四边形,于是MNAT.因为AT平面P
10、AB,MN平面PAB,所以MN平面PAB.(2)解:如图,取BC的中点E,连接AE.由AB=AC得AEBC,从而AEAD,且AE=AB2-BE2=AB2-(BC2)2=5.以A为坐标原点,AE的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz. 由题意知P(0,0,4),M(0,2,0),C(5,2,0),N52,1,2,PM=(0,2,-4),PN=52,1,-2,AN=52,1,2.设n=(x,y,z)为平面PMN的法向量,则nPM=0,nPN=0,即2y-4z=0,52x+y-2z=0,可取n=(0,2,1).于是|cos|=|nAN|n|AN|=8525.所以直线AN与平面PM
11、N所成角的正弦值为8525.若直线l与平面的夹角为,利用法向量计算的步骤如下:跟踪训练2 在棱长为1的正方体ABCD-A1B1C1D1中,E为CC1的中点,则直线A1B与平面BDE所成的角为()A.6 B.3 C.2D.56解析:以D为原点建立空间直角坐标系,可求得平面BDE的法向量n=(1,-1,2),而BA1=(0,-1,1),所以cos =1+223=32,则=30,故直线A1B与平面BDE成60角.答案:B 例3. 如图,在正方体ABEF-DCEF中,M,N分别为AC,BF的中点,求平面MNA与平面MNB所成锐二面角的余弦值.思路分析:有两种思路,一是先根据二面角平面角的定义,在图形中
12、作出二面角的平面角,然后利用向量方法求出夹角从而得到所成二面角的大小;另一种是直接求出两个面的法向量,通过法向量的夹角求得二面角的大小.解:设正方体棱长为1.以B为坐标原点,BA,BE,BC所在直线分别为x轴,y轴,z轴建立空间直角坐标系B-xyz,则M12,0,12,N12,12,0,A(1,0,0),B(0,0,0).(方法1)取MN的中点G,连接BG,AG,则G12,14,14.因为AMN,BMN为等腰三角形,所以AGMN,BGMN,故AGB为二面角的平面角或其补角.又因为GA=12,-14,-14,GB=-12,-14,-14,所以cos=GAGB|GA|GB|=-183838=-13
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-807892.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022八年级语文下册 第六单元 21《庄子》二则课件 新人教版.pptx
