【新教材精创】7.3.1离散型随机变量的均值导学案- (人教A版 选择性必修第三册).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材精创
- 资源描述:
-
1、7.3.1离散型随机变量的均值 1理解离散型随机变量的均值的意义和性质2会根据离散型随机变量的分布列求出均值3会利用离散型随机变量的均值解决一些相关的实际问题重点:离散型随机变量的均值的意义和性质 难点:用离散型随机变量的均值解决一些相关的实际问题 1. 随机变量X的均值:一般地,若离散型随机变量X的概率分布为:则称E(X)=x1p1+x2p2+xipi+xnpnXx1x2xixnPp1p2pipn为随机变量X的均值(mean)或数学期望(mathematical expectation),数学期望简称期望.均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反
2、映了随机变量取值的平均水平.2. 两点分布的均值:一般地,如果随机变量X服从两点分布,那么:E(X)1p+0(1-p)=pX10Pp1-p3. 离散型随机变量的均值的性质:已知X是一个随机变量,且分布列如下表所示.Xx1x2xixnPp1p2pipn若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b,即随机变量X的线性函数的均值等于这个随机变量的均值E(X)的同一线性函数.特别地:(1)当a=0时,E(b)=b,即常数的均值就是这个常数本身.(2)当a=1时,E(X+b)=E(X)+b,即随机变量X与常数之和的均值等于X的均值与这个常数的和.(3)当b=0时,E(aX)=aE
3、(X),即常数与随机变量乘积的均值等于这个常数与随机变量的均值的乘积.一、 问题探究对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。 我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X78910甲射中的概率0.10.20.30.4乙射中的概率0.15
4、0.250.40.2二、典例解析例1. 在篮球比赛中,罚球命中1次得1分,不中得0分,如果某运动员罚球命中的概率为0.8,那么他罚球1次的得分X的均值是多少?典例解例2.抛掷一枚质地均匀的骰子,设出现的点数为X,求X的均值.求离散型随机变量X的均值的步骤:(1)理解X的实际意义,写出X全部可能取值;(2)求出X取每个值时的概率;(3)写出X的分布列(有时也可省略);(4)利用定义公式EX=i=1nxipi求出均值跟踪训练1.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止如果李明决定参加
5、驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X的分布列和X的均值例3:猜歌名游戏是根据歌曲的主旋律制成的铃声来猜歌名.某嘉宾参加猜歌名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A,B,C歌名的概率及猜对时获得相应的公益基金如下表所示:规则如下:按照A,B,C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下一首,求嘉宾获得的公益基金总额X的分布列及均值.歌曲ABC猜对的概率0.80.60.4获得的公益基金额/元100020003000思考:如果改变猜歌的顺序,获得公益基金的均值是否相同?如果不同,你认为哪个顺序获得的公益基金均值最大?例
6、4.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元。为保护设备,有以下三种方案:方案1:运走设备,搬运费为3800元。方案2:建保护围墙,建设费为2000元,但围墙只能挡住小洪水。方案3:不采取措施,希望不发生洪水。工地的领导该如何决策呢? 值得注意的是,上述结论是通过比较“期望总损失”而得出的,一般地,我们可以这样来理解“期望总损失”:如果问题中的天气状况多次发生,那么采用方案2将会使总损失减到最小,不过,因为洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决
7、策,采用方案2也不一定是最好的.1若随机变量X的分布列为X101P则E(X)()A0 B1 C D2.某射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的数学期望为()A.2.44 B.3.376 C.2.376 D.2.43.已知的分布列如下表,若=3+2,则E()=. 123P12t134.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,22.用X表示坐标原点到l的距离,则随机变量X的数学期望E(X)=.5.口袋里装有大小相同的8张卡片,其中3张标有数字1,3张标有数字2,2张标有数字3.第一次从口袋里任
8、意抽取1张,放回口袋里后第二次再任意抽取1张,记第一次与第二次取到卡片上数字之和为.求:(1)为何值时,其发生的概率最大?并说明理由.(2)随机变量的数学期望E().1求离散型随机变量均值的步骤(1)确定离散型随机变量X的取值;(2)写出分布列,并检查分布列的正确与否;(3)根据公式写出均值2若X,Y是两个随机变量,且YaXb,则E(Y)aE(X)b;如果一个随机变量服从两点分布,可直接利用公式计算均值 参考答案:知识梳理学习过程一、 问题探究探究1.类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-808047.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022届高考统考英语人教版一轮复习课件:必修4 UNIT 1 WOMEN OF ACHIEVEMENT .ppt
